Skip to main content

Advertisement

Log in

A queueing model for a wireless sensor node using energy harvesting

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper we propose a generic queueing model that can be used to evaluate the performance of a wireless sensor node that uses energy harvesting. The alteration of such a device between the transmit and sleep mode (or between consuming energy and harvesting energy), is modeled by means of a finite capacity queueing system with repeated server vacations. The duration of a service, resp. vacation, is determined by the available energy at the start of the service, resp. vacation. Therefor we introduce in the model a variable that keeps track of the available energy. The system occupancy and the available energy are observed at inspection instants (i.e., the end of a service or of a vacation), resulting in a discrete-time Markov Chain. We derive closed form formulas for the system occupancy distribution at inspection instants and at arbitrary time instants together with the Laplace transform of the waiting time distribution. The possible use of the model to evaluate the system’s performance for various parameter values is illustrated by means of a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code availability

None.

References

  1. Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: a comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.

    Article  Google Scholar 

  2. Ahmed, I., Butt, M. M., Psomas, C., Mohammed, A., Krikidis, I., & Guizani, M. (2015). Survey on energy harvesting wireless communications: challenges and opportunities for radio resource allocation. Computer Networks, 88, 234–248.

    Article  Google Scholar 

  3. C. Delgado, J.M. Sanz, C. Blondia, J. Famaey (2020), Battery-less LoRaWAN communications using energy harvesting: modeling and characterization. IEEE Internet of Things Journal.

  4. Patil, K., & Fiems, D. (2018). The value of information in energy harvesting sensor networks. Operations Research Letters, 46(3), 362–366.

    Article  Google Scholar 

  5. A. Mouapi and N. Hakem (2016), Performance evaluation of wireless sensor node powered by RF energy harvesting. In Proceedings of the 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, 1–4.

  6. Kosunalp, S. (2015). MAC protocols for energy harvesting wireless sensor networks: a survey. ETRI Journal, 37(4), 804–812.

    Article  Google Scholar 

  7. Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: challenges and tradeoffs. Ad Hoc Networks, 17, 117–134.

    Article  Google Scholar 

  8. Mitici, M. A., Goseling, J., de Graaf, M., & Boucherie, J. (2016). Energy-efficient data collection in wireless sensor networks with time constraints. Performance Evaluation, 102, 34–52.

    Article  Google Scholar 

  9. Li J., Zhou H.Y., Zuo D.C., Hou K.M., Xie H.P. (2014), Zhou P. Energy consumption evaluation for wireless sensor network nodes based on queuing Petri net. International Journal of Distribution of. Sensing Network, 11

  10. Ke J.-F., Chen W.-J., Huang D.-C. (2015). A life extend approach based on priority queue N strategy for wireless sensor network. In: Proceedings of the 11th EAI international conference on heterogeneous networking for quality, reliability, security and robustness (QSHINE), Taipei, Taiwan. 19–20 Aug 2015, pp 272–279.

  11. Ghosh S., Unnikrishnan S. (2017). Reduced power consumption in wireless sensor networks using queue-based approach. In: Proceedings of the 5th IEEE international conference on advances in computing, communication and control (ICAC3); Mumbai, India. 1–2 Dec 2017

  12. Kempa, W. M. (2019). Analytical model of a wireless sensor network (WSN) node operation with a modified threshold-type energy saving mechanism. Sensors, 19(14), 3114.

    Article  Google Scholar 

  13. Y-H. Chen, B. Ng, W.K.G. Seah, A-C. Pang (2016), Modeling and analysis: energy harvesting in the internet of things. In: Proceedings of the 19th international conference on modeling, analysis and simulation of wireless and mobile systems, pp 156–165

  14. Cuypere, E., De Turck, K., & Fiems, D. (2018). A queueing model of an energy harvesting sensor node with data buffering. Telecommunication Systems, 67, 281–295.

    Article  Google Scholar 

  15. A. Seyedi, B. Sikdar (2008), Modeling and analysis of energy harvesting nodes in wireless sensor networks. In: Proceedings of the 2008 46th annual allerton conference on communication, control, and computing, Urbana-Champaign, IL

  16. Jornet, J. S., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz Band. IEEE Transactions on Nanotechnology, 11, 570–580.

    Article  Google Scholar 

  17. P.-J. Courtois (1980), The M/G/1 finite capacity queue with delays. IEEE Transaction on. Communication, COM 28(2), 165–172.

  18. Lee, T. T. (1984). M/G/1/N queue with vacation time and exhaustive service discipline. Operations Research, 32(4), 774–784.

    Article  Google Scholar 

  19. Frey, A., & Takahashi, Y. (1998). An explicit solution for an M/GI/1/N queue with vacation time and exhaustive service discipline. Journal of the Operations Research Society of Japan, 41(3), 95–100.

    Article  Google Scholar 

  20. Blondia, C. (1989). A finite capacity multi-queueing system with priorities and with repeated server vacations. Queueing Systems, 5(4), 313–330.

    Article  Google Scholar 

  21. Blondia, C. (1991). Finite capacity vacation models with non-renewal input. Journal of Applied Probability, 28, 174–197.

    Article  Google Scholar 

  22. Mahabhashyam, S. R., & Gautam, N. (2005). On queues with Markov modulated service rates. Queueing Systems, 51, 89–113.

    Article  Google Scholar 

  23. Horvath, G., Saffer, Z., & Telek, M. (2017). Queue length analysis of a markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 13(3), 1365–1381.

    Article  Google Scholar 

  24. Abhishek, M. A. A., Boon, O. J., & Boxma, R.-Q. (2017). A single-server queue with batch arrivals and semi-Markov services. Queueing Systems, 86, 217–240.

    Article  Google Scholar 

Download references

Funding

Flemish FWO project G0B7915N, “Modelling and Control of Energy Harvesting Wireless Sensor Networks”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Blondia.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Availability of data and material

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

We derive explicit formulas for \(\left( {\overline{\varvec{\omega }}_{{\varvec{n}}}^{\varvec{*}} } \right)\left( 0 \right) \cdot \overline{\varvec{e}}\) and \(\left( {\overline{\varvec{\pi }}_{{\varvec{n}}}^{\varvec{*}} } \right)\left( 0 \right) \cdot \overline{\varvec{e}}\).

In a similar way as in [18], it is possible to show that for \(n = 0, \ldots ,N - 1\)

$$ \begin{aligned} (\overline{\varvec{\omega }}_{{\varvec{n}}}^{\varvec{*}} )_{i} \left( \theta \right) = & \sigma_{i} \cdot \left\{ {\frac{1}{{\left( {\lambda - \theta } \right)V_{i} }}[ V_{i}^{*} \left( \vartheta \right)\left( {\frac{\lambda }{\lambda - \theta }} \right)^{n} - \mathop \sum \limits_{k = 0}^{n} h_{k,i} \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} } \right\} \\ = & \frac{1}{{\left( {\lambda - \theta } \right)D}} \cdot (\overline{p}_{0} )_{i} \cdot \left\{ { V_{i}^{*} \left( \vartheta \right) \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n} - \mathop \sum \limits_{k = 0}^{n} h_{k,i} \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} } \right\}, \\ \end{aligned} $$

and hence

$$ \left( {\overline{\varvec{\omega }}_{{\varvec{n}}}^{\varvec{*}} } \right)\left( \theta \right) \cdot \overline{\varvec{e}} = \frac{1}{{\left( {\lambda - \theta } \right)D}} \cdot \{ \overline{\varvec{p}}_{0} \cdot \overline{\varvec{V}}^{\varvec{*}} \left( \vartheta \right) \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n} - \mathop \sum \limits_{k = 0}^{n} \overline{\varvec{p}}_{0} \cdot {\varvec{B}}_{{\varvec{k}}} \cdot \overline{\varvec{e}} \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} $$
(40)

and the probability of having a system occupancy equal to n at an arbitrary instant of a vacation interval is given by

$$ \left( {\overline{\varvec{\omega }}_{{\varvec{n}}}^{\varvec{*}} } \right)\left( 0 \right) \cdot \overline{\varvec{e}} = \frac{1}{\lambda \cdot D} \cdot \overline{\varvec{p}}_{0} \cdot \left[ {\overline{\varvec{e}} - \mathop \sum \limits_{k = 0}^{n} {\varvec{B}}_{{\varvec{k}}} \cdot \overline{\varvec{e}}} \right] $$
(41)

For n = N, we obtain

$$ (\overline{\varvec{\omega }}_{{\varvec{N}}}^{\varvec{*}} )_{i} \left( \theta \right) = \sigma_{i} \cdot \left\{ {\frac{1}{{\left( {\lambda - \theta } \right)V_{i} }}\mathop \sum \limits_{n = N}^{\infty } \left[ {V_{i}^{*} \left( \vartheta \right)\left( {\frac{\lambda }{\lambda - \theta }} \right)^{n} - \mathop \sum \limits_{k = 0}^{n} h_{k,i} \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} } \right]} \right\} $$

which leads to

$$ \left( {\overline{\varvec{\omega }}_{{\varvec{N}}}^{\varvec{*}} } \right)\left( 0 \right) \cdot \overline{\varvec{e}} = \frac{1}{D} \cdot \overline{\varvec{p}}_{0} \cdot \overline{{{\varvec{E}}\left[ {\varvec{V}} \right]}} - \mathop \sum \limits_{n = 0}^{N - 1} \left( {\overline{\varvec{\omega }}_{{\varvec{n}}}^{\varvec{*}} } \right)\left( 0 \right) \cdot \overline{\varvec{e}} $$
(42)

In the same way, for n = 1, …, N − 1

$$ \begin{aligned} (\overline{\varvec{\pi }}_{{\varvec{n}}}^{\varvec{*}} )_{i} \left( \theta \right) = & \rho_{i} \cdot \left\{ {\mathop \sum \limits_{k = 1}^{n} \frac{{(\overline{\varvec{p}}_{{\varvec{k}}} )_{i} }}{{\mathop \sum \nolimits_{l = 1}^{N} (\overline{\varvec{p}}_{{\varvec{l}}} )_{i} }} \cdot \frac{1}{{\left( {\lambda - \theta } \right)S_{i} }} \cdot \left[ {S_{i}^{*} \left( \vartheta \right) \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} - \mathop \sum \limits_{l = 0}^{n - k} g_{l,i} \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k - l} } \right]} \right\}, \\ = & \frac{1}{{\left( {\lambda - \theta } \right)D}} \cdot \left\{ {\mathop \sum \limits_{k = 1}^{n} (\overline{\varvec{p}}_{{\varvec{k}}} )_{j} \cdot [ S_{i}^{*} \left( \vartheta \right) \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} - \mathop \sum \limits_{l = 0}^{n - k} g_{l,i} \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k - l} } \right\} \\ \end{aligned} $$

and hence

$$ \begin{aligned} (\overline{\varvec{\pi }}_{{\varvec{n}}}^{\varvec{*}} )(\theta ) \cdot \overline{e} = & \frac{1}{{\left( {\lambda - \theta } \right)D}} \cdot \left\{ {\sum\limits_{k = 1}^{n} {\overline{\varvec{p}}_{{\varvec{k}}} \cdot \overline{\varvec{S }}^{*} (\vartheta ) \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} - \sum\limits_{k = 1}^{n} {\sum\limits_{l = 1}^{k} {\overline{\varvec{p}}_{{\varvec{l}}} \cdot {\varvec{A}_{\varvec{k - l}}} \cdot \overline{e} \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} } } } } \right\} \\ = & \frac{1}{(\lambda - \theta )D} \cdot \left\{ {\sum\limits_{k = 1}^{n} {\overline{p}_{k} \cdot \overline{S}^{*} (\vartheta ) \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} - \sum\limits_{k = 1}^{n} {\left( {\overline{p}_{k - 1} - \overline{p}_{0} \cdot {\varvec{B}}_{\varvec{k - 1}} } \right) \cdot \overline{e} \cdot \left( {\frac{\lambda }{\lambda - \theta }} \right)^{n - k} } } } \right\} \\ \end{aligned} $$
(43)

The probability of having a system occupancy equal to n at an arbitrary instant of a service interval is given by

$$ \left( {\overline{\varvec{\pi }}_{{\varvec{n}}}^{\varvec{*}} } \right)\left( 0 \right) \cdot \overline{\varvec{e}} = \frac{1}{\lambda \cdot D} \cdot \left[ {\overline{\varvec{p}}_{{\varvec{n}}} \cdot \overline{\varvec{e}} - \overline{\varvec{p}}_{0} \cdot \overline{\varvec{e}} + \mathop \sum \limits_{k = 0}^{n - 1} \overline{\varvec{p}}_{0} \cdot {\varvec{B}}_{{\varvec{k}}} \cdot \overline{\varvec{e}}} \right] $$
(44)

For n = N, we obtain

$$ \left( {\overline{\varvec{\pi }}_{{\varvec{N}}}^{\varvec{*}} } \right)\left( 0 \right) \cdot \overline{\varvec{e}} = \frac{1}{D} \cdot \mathop \sum \limits_{n = 1}^{N - 1} \overline{\varvec{p}}_{{\varvec{k}}} \cdot \overline{{{\varvec{E}}\left[ {\varvec{S}} \right]}} - \mathop \sum \limits_{n = 0}^{N - 1} \left( {\overline{\varvec{\pi }}_{{\varvec{n}}}^{\varvec{*}} } \right)\left( 0 \right) \cdot \overline{\varvec{e}} $$
(45)

Appendix 2

Since

$$ \overline{\varvec{W}}^{*} (\theta ) = \frac{1}{{1 - P_{b} }}\left[ {\sum\limits_{n = 1}^{N - 1} {\overline{\varvec{\pi }}_{{\varvec{n}}}^{*} (\theta ) \cdot Diag\left( {\prod\nolimits_{k = 1}^{n} {S_{{F^{k} (1)}}^{*} (\theta ), \ldots ,\prod\nolimits_{k = 1}^{n} {S_{{F^{k} (i_{\max } )}}^{*} (\theta )} } } \right) + \sum\limits_{n = 0}^{N - 1} {\overline{\varvec{\omega }}_{{\varvec{n}}}^{*} (\theta ) \cdot Diag\left( {\prod\nolimits_{k = 1}^{n + 1} {S_{{F^{k} (G(1))}}^{*} (\theta ), \ldots ,\prod\nolimits_{k = 1}^{n + 1} {S_{{F^{k} (G(i_{\max } ))}}^{*} (\theta )} } } \right)} } } \right] $$

by taking the derivative

$$ E\left[ W \right] = - \frac{{d\overline{\varvec{W}}^{*} \left( \theta \right)}}{d\theta }|_{\theta = 0} \cdot \overline{\varvec{e}} $$

we obtain

$$ \begin{aligned} E[W] = & \frac{1}{{1 - P_{b} }}\left\{ { - \sum\limits_{{n = 1}}^{{N - 1}} {\frac{{d{\overline{\varvec{\pi }}_{{\varvec{n}}}^{\varvec{*}} } (\theta )}}{{d\theta }}|_{{\theta = 0}} \cdot \overline{\varvec{e}} - \sum\limits_{{n = 0}}^{{N - 1}} {\frac{{d{\overline{\varvec{\omega }}_{{\varvec{n}}}^{\varvec{*}} } (\theta )}}{{d\theta }}|_{{\theta = 0}} \cdot \bar{e}} } } \right. \\ & \; + \sum\limits_{{n = 1}}^{{N - 1}} {\bar{\pi }_{n}^{*} (0) \cdot \left( {\sum\nolimits_{{l = 1}}^{n} {E\left[ {S_{{F^{l} (1)}} } \right]} , \ldots ,\sum\nolimits_{{l = 1}}^{n} {E\left[ {S_{{F^{l} (i_{{\max }} )}} } \right]} } \right)} ^{'} \\ & \left. { \; + \sum\limits_{{n = 0}}^{{N - 1}} {\bar{\omega }_{n}^{*} (0) \cdot \left( {\sum\nolimits_{{l = 1}}^{{n + 1}} {E\left[ {S_{{F^{l} \left( {G(1)} \right)}} } \right], \ldots ,\sum\nolimits_{{l = 1}}^{{n + 1}} {E\left[ {S_{{F^{l} \left( {G\left( {i_{{\max }} } \right)} \right)}} } \right]} } } \right)^{\prime} ]} } \right\} \\ \end{aligned} $$
(46)

Using the results for \(\left( {\overline{\varvec{\pi }}_{{\varvec{n}}}^{\varvec{*}} } \right)\left( \theta \right) \cdot \overline{\varvec{e}}\) and \(\left( {\overline{\varvec{\omega }}_{{\varvec{n}}}^{\varvec{*}} } \right)\left( \theta \right) \cdot \overline{\varvec{e}}\) in (41) and (44) and the fact that

$$ \mathop \sum \limits_{n = 1}^{N - 1} \overline{\varvec{\pi }}_{{\varvec{n}}}^{\varvec{*}} \left( 0 \right) \cdot \left( {\mathop \sum \limits_{l = 1}^{n} E\left[ {S_{{F^{l} \left( 1 \right)}} } \right], \ldots ,\mathop \sum \limits_{l = 1}^{n} E\left[ {S_{{F^{l} \left( {i_{{{\text{max}}}} } \right)}} } \right]} \right)^{^{\prime}} = \mathop \sum \limits_{n = 1}^{N - 1} \overline{\varvec{\pi }}_{{\varvec{n}}}^{\varvec{*}} \left( 0 \right) \cdot \left( {n \cdot E\left[ {S_{1} } \right], \ldots ,n \cdot E\left[ {S_{{i_{{{\text{max}}}} }} } \right]} \right) ^{^{\prime}} $$

and.

\(\mathop \sum \limits_{n = 0}^{N - 1} \overline{\varvec{\omega }}_{{\varvec{n}}}^{\varvec{*}} \left( 0 \right) \cdot \left( {\mathop \sum \limits_{l = 1}^{n + 1} E\left[ {S_{{F^{l} \left( {G\left( 1 \right)} \right)}} } \right], \ldots ,\mathop \sum \limits_{l = 1}^{n + 1} E\left[ {S_{{F^{l} \left( {G\left( {i_{max} } \right)} \right)}} } \right]} \right)^{^{\prime}} = \mathop \sum \limits_{n = 0}^{N - 1} \overline{\varvec{\omega }}_{{\varvec{n}}}^{\varvec{*}} \left( 0 \right) \cdot \left( {\left( {n + 1} \right) \cdot E\left[ {S_{1} } \right], \ldots ,\left( {n + 1} \right) \cdot E\left[ {S_{{i_{max} }} } \right]} \right) ^{^{\prime}}\) we obtain Little’s well known result

$$ E\left[ W \right] = \frac{1}{{1 - P_{b} }} \cdot \frac{1}{\lambda } \cdot E\left[ \eta \right] $$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blondia, C. A queueing model for a wireless sensor node using energy harvesting. Telecommun Syst 77, 335–349 (2021). https://doi.org/10.1007/s11235-021-00758-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00758-1

Keywords

Navigation