Skip to main content
Log in

Filigree in the Surroundings of Polar Crown and High-Latitude Filaments

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

High-resolution observations of polar crown and high-latitude filaments are scarce. We present a unique sample of such filaments observed in high-resolution H\(\upalpha \) narrow-band filtergrams and broad-band images, which were obtained with a new fast camera system at the Vacuum Tower Telescope (VTT), Tenerife, Spain. The Chromospheric Telescope (ChroTel) provided full-disk context observations in H\(\upalpha\), Ca ii K, and He i 10830 Å. The Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) provided line-of-sight magnetograms and ultraviolet (UV) 1700 Å filtergrams, respectively. We study filigree in the vicinity of polar crown and high-latitude filaments and relate their locations to magnetic concentrations at the filaments’ footpoints. Bright points are a well studied phenomenon in the photosphere at low latitudes, but they were not yet studied in the quiet network close to the poles. We examine size, area, and eccentricity of bright points and find that their morphology is very similar to their counterparts at lower latitudes, but their sizes and areas are larger. Bright points at the footpoints of polar crown filaments are preferentially located at stronger magnetic flux concentrations, which are related to bright regions at the border of supergranules as observed in UV filtergrams. Examining the evolution of bright points on three consecutive days reveals that their amount increases while the filament decays, which indicates they impact the equilibrium of the cool plasma contained in filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Babcock, H.W., Babcock, H.D.: 1955, The Sun’s magnetic field, 1952 – 1954. Astrophys. J. 121, 349. DOI. ADS.

    Article  ADS  Google Scholar 

  • Beck, C., Bellot Rubio, L.R., Schlichenmaier, R., Sütterlin, P.: 2007, Magnetic properties of G-band bright points in a sunspot moat. Astron. Astrophys. 472, 607. DOI. ADS.

    Article  ADS  Google Scholar 

  • Beck, C., Fabbian, D., Rezaei, R., Puschmann, K.G.: 2017, The polarization signature of photospheric magnetic fields in 3D MHD simulations and observations at disk center. Astrophys. J. 842, 37. DOI. ADS.

    Article  ADS  Google Scholar 

  • Berger, T.E., Title, A.M.: 2001, On the relation of G-band bright points to the photospheric magnetic field. Astrophys. J. 553, 449. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bethge, C., Peter, H., Kentischer, T.J., Halbgewachs, C., Elmore, D.F., Beck, C.: 2011, The Chromospheric Telescope. Astron. Astrophys. 534, A105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brault, J.W.: 1985, Fourier transform spectroscopy. In: Benz, A.O., Huber, M., Mayer, M. (eds.) High Resolution in Astronomy, Fifteenth Advanced Course of the Swiss Society of Astronomy and Astrophysics, Geneva Observatory, Sauverny, 3. ADS.

    Google Scholar 

  • Chae, J.: 2003, The formation of a prominence in NOAA active region 8668. II. Trace observations of jets and eruptions associated with canceling magnetic features. Astrophys. J. 584, 1084. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chae, J., Denker, C., Spirock, T.J., Wang, H., Goode, P.R.: 2000, High-resolution H\(\upalpha\) observations of proper motion in NOAA 8668: evidence for filament mass injection by chromospheric reconnection. Solar Phys. 195, 333. DOI. ADS.

    Article  ADS  Google Scholar 

  • Collados, M., Bettonvil, F., Cavaller, L., Ermolli, I., Gelly, B., Pérez, A., Socas-Navarro, H., Soltau, D., Volkmer, R., EST Team: 2010, European solar telescope: progress status. Astron. Nachr. 331, 615. DOI. ADS.

    Article  ADS  Google Scholar 

  • Collados, M., López, R., Páez, E., Hernández, E., Reyes, M., Calcines, A., Ballesteros, E., Díaz, J.J., Denker, C., Lagg, A., Schlichenmaier, R., Schmidt, W., Solanki, S.K., Strassmeier, K.G., von der Lühe, O., Volkmer, R.: 2012, GRIS: the GREGOR infrared spectrograph. Astron. Nachr. 333, 872. DOI. ADS.

    Article  ADS  Google Scholar 

  • Crockett, P.J., Mathioudakis, M., Jess, D.B., Shelyag, S., Keenan, F.P., Christian, D.J.: 2010, The area distribution of solar magnetic bright points. Astrophys. J. Lett. 722, L188. DOI. ADS.

    Article  ADS  Google Scholar 

  • Denker, C., Balthasar, H., Hofmann, A., Bello González, N., Volkmer, R.: 2010, The GREGOR Fabry–Pérot interferometer: a new instrument for high-resolution solar observations. In: McLean, I.S., Ramsay, S.K., Takami, H. (eds.) Proc. SPIE, Ground-Based and Airborne Instrumentation for Astronomy III. 7735, 77356M. DOI. ADS.

    Chapter  Google Scholar 

  • Denker, C., Verma, M., Kuckein, C., Diercke, A., Kamlah, R., Seelemann, T., Balthasar, H., Dineva, E., Kontogiannis, I., Pal, P.: 2021, Synchronized, high-cadence CMOS cameras for imaging spectroscopy and image restoration. Solar Phys., submitted.

  • Diercke, A., Denker, C.: 2019, Chromospheric synoptic maps of polar crown filaments. Solar Phys. 294, 152. DOI. ADS.

    Article  ADS  Google Scholar 

  • Diercke, A., Kuckein, C., Verma, M., Denker, C.: 2018, Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet. Astron. Astrophys. 611, A64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dudík, J., Aulanier, G., Schmieder, B., Zapiór, M., Heinzel, P.: 2012, Magnetic topology of bubbles in quiescent prominences. Astrophys. J. 761, 9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dunn, R.B., Zirker, J.B.: 1973, The solar filigree. Solar Phys. 33, 281. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dunn, R.B., Zirker, J.B., Beckers, J.M.: 1974, Properties of the solar filigree structure. In: Athay, R.G. (ed.) Chromospheric Fine Structure, IAU Symp. 56, 45. ADS.

    Chapter  Google Scholar 

  • Engvold, O.: 2004, Structures and dynamics of solar filaments – challenges in observing and modeling. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity 223, 187. DOI. ADS.

    Chapter  Google Scholar 

  • Fanning, D.W.: 2011, Coyote’s Guide to Traditional IDL Graphics, Coyote Publishing, Fort Collins.

    Google Scholar 

  • Feng, S., Ji, K.-F., Deng, H., Wang, F., Fu, X.-D.: 2012, Automatic detection and extraction algorithm of inter-granular bright points. J. Korean Astron. Soc. 45, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gaizauskas, V.: 2001, Solar filament channels. In: Murdin, P. (ed.) Encyclopedia of Astronomy and Astrophysics, IOP Publishing/Nature Publishing Group, London, 2509. DOI. ADS.

    Chapter  Google Scholar 

  • Giannattasio, F., Berrilli, F., Consolini, G., Del Moro, D., Gošić, M., Bellot Rubio, L.: 2018, Occurrence and persistence of magnetic elements in the quiet Sun. Astron. Astrophys. 611, A56. DOI. ADS.

    Article  Google Scholar 

  • Iazev, S.A., Khmyrov, G.M.: 1988, An investigation of a giant filament as observed in May – July 1984: comparison with characteristics of a large-scale system of magnetic fields. Adv. Space Res. 8, 199. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jin, C., Wang, J., Zhao, M.: 2009, Vector magnetic fields of solar granulation. Astrophys. J. 690, 279. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jurčák, J., Collados, M., Leenaarts, J., van Noort, M., Schlichenmaier, R.: 2019, Recent advancements in the EST project. Adv. Space Res. 63, 1389. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kontogiannis, I., Dineva, E., Diercke, A., Verma, M., Kuckein, C., Balthasar, H., Denker, C.: 2020, High resolution spectroscopy of an erupting minifilament and its impact on the nearby chromosphere. Astrophys. J. 898, 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuckein, C.: 2019, Height variation of magnetic field and plasma flows in isolated bright points. Astron. Astrophys. 630, A139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuckein, C., Martínez Pillet, V., Centeno, R.: 2012, An active region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure. Astron. Astrophys. 539, A131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuckein, C., Verma, M., Denker, C.: 2016, Giant quiescent solar filament observed with high-resolution spectroscopy. Astron. Astrophys. 589, A84. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuckein, C., Centeno, R., Martínez Pillet, V., Casini, R., Manso Sainz, R., Shimizu, T.: 2009, Magnetic field strength of active region filaments. Astron. Astrophys. 501, 1113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuckein, C., Denker, C., Verma, M., Balthasar, H., González Manrique, S.J., Louis, R.E., Diercke, A.: 2017, sTools – a data reduction pipeline for the GREGOR Fabry–Pérot interferometer and the high-resolution fast imager at the GREGOR solar telescope. In: Vargas Domínguez, S., Kosovichev, A.G., Antolin, P., Harra, L. (eds.) Fine Structure and Dynamics of the Solar Atmosphere, IAU Symp. 327, 20. DOI. ADS.

    Chapter  Google Scholar 

  • Künzel, H.: 1955, Polarisationsinterferenzfilter und ihre Prüfung. Astron. Nachr. 282, 252. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leenaarts, J., Rutten, R.J., Sütterlin, P., Carlsson, M., Uitenbroek, H.: 2006, DOT tomography of the solar atmosphere. VI. Magnetic elements as bright points in the Blue Wing of H\(\upalpha\). Astron. Astrophys. 449, 1209. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leroy, J.L., Bommier, V., Sahal-Brechot, S.: 1983, The magnetic field in the prominences of the polar crown. Solar Phys. 83, 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, K.J.: 2010, Latitude migration of solar filaments. Mon. Not. Roy. Astron. Soc. 405, 1040. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, L., Zhang, J.: 2013, The evolution of barbs of a polar crown filament observed by SDO. Solar Phys. 282, 147. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, T., Zhang, J.: 2016, Subarcsecond bright points and quasi-periodic upflows below a quiescent filament observed by IRIS. Astron. Astrophys. 589, A114. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, K.J., Li, Q.X., Gao, P.X., Shi, X.J.: 2008, Cyclic behavior of solar full-disk activity. J. Geophys. Res. 113, A11108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, Y., Engvold, O.R., Wiik, J.E.: 2003, Counterstreaming in a large polar crown filament. Solar Phys. 216, 109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J.E., Berger, T.E.: 2005, Thin threads of solar filaments. Solar Phys. 226, 239. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler imager. Solar Phys. 279, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences. II. Magnetic structure and dynamics. Space Sci. Rev. 151, 333. DOI. ADS.

    Article  ADS  Google Scholar 

  • Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments. Solar Phys. 182, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mehltretter, J.P.: 1974, Observations of photospheric faculae at the center of the solar disk. Solar Phys. 38, 43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Muller, R.: 2001, Solar photosphere: filigree. In: Murdin, P. (ed.) Encyclopedia of Astronomy and Astrophysics, IOP Publishing/Nature Publishing Group, London. DOI. ADS.

    Chapter  Google Scholar 

  • Nesis, A., Hammer, R., Schleicher, H.: 2005, Topology and dynamics of abnormal granulation. Astron. Nachr. 326, 305. DOI. ADS.

    Article  ADS  Google Scholar 

  • Otruba, W., Pötzi, W.: 2003, The new high-speed H\(\upalpha\) imaging system at Kanzelhöhe solar observatory. Hvar Obs. Bull. 27, 189. ADS.

    ADS  Google Scholar 

  • Panesar, N.K., Innes, D.E., Schmit, D.J., Tiwari, S.K.: 2014, On the structure and evolution of a polar crown prominence/filament system. Solar Phys. 289, 2971. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pötzi, W., Veronig, A.M., Riegler, G., Amerstorfer, U., Pock, T., Temmer, M., Polanec, W., Baumgartner, D.J.: 2015, Real-time flare detection in ground-based H\(\upalpha\) imaging at Kanzelhöhe observatory. Solar Phys. 290, 951. DOI. ADS.

    Article  ADS  Google Scholar 

  • Puschmann, K.G., Denker, C., Kneer, F., Al Erdogan, N., Balthasar, H., Bauer, S.M., Beck, C., Bello González, N., Collados, M., Hahn, T., Hirzberger, J., Hofmann, A., Louis, R.E., Nicklas, H., Okunev, O., Martínez Pillet, V., Popow, E., Seelemann, T., Volkmer, R., Wittmann, A.D., Woche, M.: 2012, The GREGOR Fabry–Pérot interferometer. Astron. Nachr. 333, 880. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rutten, R., Hagenaar, H.: 2001, In: Murdin, P. (ed.) Chromosphere: Network, IOP Publishing/Nature Publishing Group, London, 1994. DOI. ADS.

    Chapter  Google Scholar 

  • Rutten, R.J., Uitenbroek, H.: 1991, Ca ii H\(_{2v}\) and K\(_{2v}\) cell grains. Solar Phys. 134, 15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sánchez Almeida, J., Márquez, I., Bonet, J.A., Domínguez Cerdeña, I., Muller, R.: 2004, Bright points in the internetwork quiet Sun. Astrophys. J. Lett. 609, L91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello Gonzalez, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.A.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmieder, B.: 2001, Chromosphere. In: Murdin, P. (ed.) Encyclopedia of Astronomy and Astrophysics, IOP Publishing/Nature Publishing Group, London. DOI. ADS.

    Chapter  Google Scholar 

  • Schmieder, B., Chandra, R., Berlicki, A., Mein, P.: 2010, Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon). Astron. Astrophys. 514, A68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Z., Diercke, A., Denker, C.: 2018, Calibration of full-disk He i 10830 Å filtergrams of the Chromospheric Telescope. Astron. Nachr. 339, 661. DOI. ADS.

    Article  ADS  Google Scholar 

  • Simon, G.W., Zirker, J.B.: 1974, A search for the footpoints of solar magnetic fields. Solar Phys. 35, 331. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sobotka, M., Bonet, J.A., Vazquez, M.: 1994, A high-resolution study of the structure of sunspot light bridges and abnormal granulation. Astrophys. J. 426, 404. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tarbell, T., Ferguson, S., Frank, Z., Shine, R., Title, A., Topka, K., Scharmer, G.: 1990, High-resolution observations of emerging magnetic fields and flux tubes in active region photosphere. In: Stenflo, J.O. (ed.) Solar Photosphere: Structure, Convection, and Magnetic Fields, IAU Symp. 138, 147. ADS.

    Chapter  Google Scholar 

  • Tritschler, A., Rimmele, T.R., Berukoff, S., Casini, R., Kuhn, J.R., Lin, H., Rast, M.P., McMullin, J.P., Schmidt, W., Wöger, F., DKIST Team: 2016, Daniel K. Inouye Solar Telescope: high-resolution observing of the dynamic Sun. Astron. Nachr. 337, 1064. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsiropoula, G., Tziotziou, K., Kontogiannis, I., Madjarska, M.S., Doyle, J.G., Suematsu, Y.: 2012, Solar fine-scale structures. I. Spicules and other small-scale, jet-like events at the chromospheric level: observations and physical parameters. Space Sci. Rev. 169, 181. DOI. ADS.

    Article  ADS  Google Scholar 

  • Utz, D., Jurčák, J., Hanslmeier, A., Muller, R., Veronig, A., Kühner, O.: 2013, Magnetic field strength distribution of magnetic bright points inferred from filtergrams and spectro-polarimetric data. Astron. Astrophys. 554, A65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Utz, D., del Toro Iniesta, J.C., Bellot Rubio, L.R., Jurčák, J., Martínez Pillet, V., Solanki, S.K., Schmidt, W.: 2014, The formation and disintegration of magnetic bright points observed by Sunrise/IMaX. Astrophys. J. 796, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verma, M., Denker, C.: 2011, Horizontal flow fields observed in Hinode G-band images. I. Methods. Astron. Astrophys. 529, A153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verma, M., Denker, C.: 2014, Horizontal flow fields observed in Hinode G-band images. IV. Statistical properties of the dynamical environment around pores. Astron. Astrophys. 563, A112. DOI. ADS.

    Article  ADS  Google Scholar 

  • von der Lühe, O.: 1998, High-resolution observations with the German Vacuum Tower telescope on Tenerife. New Astron. Rev. 42, 493. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, J., Li, W., Denker, C., Lee, C., Wang, H., Goode, P.R., McAllister, A., Martin, S.F.: 2000, Minifilament eruption on the quiet Sun. I. Observations at H\(\upalpha\) central line. Astrophys. J. 530, 1071. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wilson, P.R.: 1981, Faculae, filigree and calcium bright points. Solar Phys. 69, 9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xu, Y., Pötzi, W., Zhang, H., Huang, N., Jing, J., Wang, H.: 2018, Collective study of polar crown filaments in the past four solar cycles. Astrophys. J. 862, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, Y., Li, X., Bai, X., Zhou, H., Liang, B., Zhang, X., Feng, S.: 2019, Morphological classification of G-band bright points based on deep learning. Astrophys. J. 887, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, M., Wang, J.-X., Jin, C.-L., Zhou, G.-P.: 2009, Magnetic non-potentiality on the quiet Sun and the filigree. Res. Astron. Astrophys. 9, 933. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Vacuum Tower Telescope (VTT) at the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias is operated by the German consortium of the Leibniz-Institut für Sonnenphysik (KIS) in Freiburg, the Leibniz-Institut für Astrophysik Potsdam (AIP), and the Max-Planck-Institut für Sonnensystemforschung (MPS) in Göttingen. ChroTel is operated by the KIS in Freiburg, Germany, at the Spanish Observatorio del Teide on Tenerife (Spain). The ChroTel filtergraph was developed by the KIS in cooperation with the High Altitude Observatory (HAO) in Boulder, Colorado. Complementary H\(\upalpha \) full-disk data were provided by the Kanzelhöhe Solar Observatory, University of Graz, Austria. We acknowledge the support by grants DE 787/5-1 (CD, CK, MV) and VE 1112/1-1 (MV) of the German Research Foundation (DFG) and the support by the European Commission’s Horizon 2020 Program (CD, CK, MV) under grant agreements 824064 (ESCAPE – European Science Cluster of Astronomy & Particle physics ESFRI research infrastructures) and 824135 (SOLARNET – Integrating High Resolution Solar Physics). The authors thank Dr. Jürgen Rendtel, Godehard Monecke, and Karin Gerber for their technical support during the observing campaign at VTT and Dr. Horst Balthasar for fruitful discussions. We thank Dr. Ioannis Kontogiannis for his helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Diercke.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diercke, A., Kuckein, C., Verma, M. et al. Filigree in the Surroundings of Polar Crown and High-Latitude Filaments. Sol Phys 296, 35 (2021). https://doi.org/10.1007/s11207-021-01776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01776-7

Keywords

Navigation