Skip to main content
Log in

Accounting for Edge-Plasma Parameter Dynamics at JET Divertor Sputtering Estimation during Edge-Localized Modes

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The sputtering of tungsten divertor tiles at the JET ITER-like wall (ILW) during edge-localized modes (ELMs) is one of the main sources of tungsten impurity in the core plasma. The analytical approach for interpretation of the Langmuir probe (LP) measurements of ion flux at the divertor tile is elaborated to model the ELM ion parallel transport and to estimate the flux of sputtered tungsten atoms from the divertor under inter-ELM and intra-ELM conditions. Accounting for the pedestal temperature and density decrease at the pedestal crash during ELM allows obtaining the profiles of the particle and heat fluxes at the divertor tile corresponding to the measurements at the physically correct magnetic connection length. Estimates of the tungsten sputtered flux under intra-ELM and inter-ELM conditions show that first type ELMs contribute significantly (~85%) to the overall tungsten sputtering, which is in a good agreement with the divertor optical emission spectroscopy of the 400.9 nm atomic neutral tungsten line in JET discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. A. Pitts et al., J. Nucl. Mater. 415, 957 (2011).

    Article  Google Scholar 

  2. C. Guillemaut et al., Plasma Phys. Control. Fusion 57, 085006 (2015).

    Article  ADS  Google Scholar 

  3. J. P. Gunn et al., Nucl. Fusion 57, 046025 (2017).

    Article  ADS  Google Scholar 

  4. S. Brezinsek et al., J. Nucl. Mater. 463, 11 (2015).

    Article  ADS  Google Scholar 

  5. M. Shimada et al., Nucl. Fusion 47, S1 (2007).

    Article  Google Scholar 

  6. P. Monier-Garbet et al., Nucl. Fusion 45, 1404 (2005).

    Article  ADS  Google Scholar 

  7. T. Abrams et al., Nucl. Mater. Energy 17, 164 (2018).

    Article  Google Scholar 

  8. N. Den Harder et al., Nucl. Fusion 56, 02601 (2016).

    Article  Google Scholar 

  9. A. Kallenbach et al., Plasma Phys. Control. Fusion 47, B207 (2005).

    Article  Google Scholar 

  10. I. Borodkina et al., Nucl. Mater. Energy 12, 341 (2017).

    Article  Google Scholar 

  11. G. J. van Rooij et al., J. Nucl. Mater. 438, S42 (2013).

    Article  Google Scholar 

  12. I. Borodkina et al., Phys. Scr. 170, 014065 (2017).

    Article  Google Scholar 

  13. S. Brezinsek et al., Nucl. Fusion 53, 083023 (2013).

    Article  ADS  Google Scholar 

  14. W. Fundamenski et al., Plasma Phys. Control. Fusion 48, 109 (2006).

    Article  ADS  Google Scholar 

  15. T. Eich et al., J. Nucl. Mater. 390–391, 760 (2009).

    Article  ADS  Google Scholar 

  16. D. Moulton et al., Plasma Phys. Control. Fusion 55, 085003 (2013).

    Article  ADS  Google Scholar 

  17. C. Guillemaut et al., Nucl. Fusion 58, 066006 (2018).

    Article  ADS  Google Scholar 

  18. W. Eckstein et al., Report IPP 9, 132 (2002).

    Google Scholar 

  19. I. Borodkina et al., Contrib. Plasma Phys. 56, 640 (2016).

    Article  ADS  Google Scholar 

  20. I. Borodkina et al., Russ. Phys. J. 58, 438 (2015).

    Article  Google Scholar 

  21. S. Pamela et al., Plasma Phys. Control. Fusion 58, 014026 (2016).

    Article  ADS  Google Scholar 

  22. G. T. A. Huysmans et al., Plasma Phys. Control. Fusion 51, 124012 (2009).

    Article  ADS  Google Scholar 

  23. A. W. Leonard, Phys. Plasmas 21, 090501 (2014).

    Article  ADS  Google Scholar 

  24. D. M. Harting et al., J. Nucl. Mater. 463, 493 (2015).

    Article  ADS  Google Scholar 

  25. S. Wiesen et al., Nucl. Fusion 57, 066024 (2017).

    Article  ADS  Google Scholar 

  26. W. Eckstein, Top. Appl. Phys. 110, 33 (2007).

    Article  Google Scholar 

Download references

Funding

This work was supported by Russian Science Foundation (project no. 18-72-00178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Borodkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodkina, I.E., Kurnaev, V.A. Accounting for Edge-Plasma Parameter Dynamics at JET Divertor Sputtering Estimation during Edge-Localized Modes. Phys. Atom. Nuclei 83, 1145–1150 (2020). https://doi.org/10.1134/S1063778820070030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820070030

Keywords:

Navigation