Skip to main content
Log in

Estimation of the Degradation Rate of the In-Vessel Mirrors for the H-Alpha and Visible Spectroscopy Diagnostics in ITER

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Mirrors for light transmittance will be used in more than 30 optical and laser diagnostics installed in the ITER tokamak reactor. Their reliable performance depends largely on the degradation rate of the first mirror directly facing the plasma. The fluxes of neutral atoms, mostly D, T, and Be, from the plasma are the most dangerous for the first mirror. The interaction with the high-energy atoms can lead to sputtering of the mirror surface; redeposition of beryllium sputtered from the walls of the vacuum chamber can lead to the formation of a film on the mirror. This paper gives a conservative estimate of the degradation rate of in-vessel mirrors in the equatorial channels of the H-alpha and Visible Spectroscopy diagnostics. Calculations were performed for stationary ITER operation using the Zemax OpticStudio program. The results show that the working area of the first mirror will be sputtered at a rate of no more than 100 nm/year, which is an acceptable erosion load for mirrors made of single-crystal molybdenum. Beryllium film formation is expected only at the edges of the mirror (outside the working area). Possible contamination of the working part of the mirror as a result of accidents or plasma events can be eliminated using the mirror cleaning system installed into the first mirror unit. For the other in-vessel mirrors, the estimate predicts no significant degradation owing to their location at a long distance from the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. E. N. Andreenko, A. G. Alekseev, A. B. Kukushkin, et al., Fusion Eng. Des. 123, 825 (2017).

    Article  Google Scholar 

  2. A. F. Bardamid, K. Yu. Vukolov, V. G. Konovalov, I. I. Orlovsky, et al., Plasma Dev. Operat. 12, 203 (2004).

    Article  Google Scholar 

  3. I. Orlovskiy, A. Alekseev, E. Andreenko, et al., Fusion Eng. Des. 96–97, 899 (2015).

    Article  Google Scholar 

  4. A. V. Rogov and Yu. V. Kapustin, Usp. Prikl. Fiz. 4, 240 (2016).

    Google Scholar 

  5. Yu. V. Kapustin and A. V. Rogov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 42 (1), 57 (2019).

    Google Scholar 

  6. A. V. Rogov and Yu. V. Kapustin, in Proceedings of the 17th All-Russian Conference on Diagnostics of High-Temperature Plasma, Zvenigorod, June 13–17, 2017, p. 68.

  7. V. Kotov, Nucl. Fusion 56, 106027 (2016).

    Article  ADS  Google Scholar 

  8. V. Kotov, D. Reiter, A. Litnovsky, et al., Phys. Scr. 145, 014071 (2011).

    Article  Google Scholar 

  9. A. Gorshkov, A. Alekseev, E. Andreenko, et al., in Proceedings of the 30th Symposium on Fusion Technology, Giardini Naxos, Italy, Sept. 16–21, 2018, P2.050.

  10. D. K. Kogut, N. N. Trifonov, and V. A. Kurnaev, J. Nucl. Mater. 438, S731 (2013).

    Article  ADS  Google Scholar 

  11. W. Eckstein, C. Garcia-Rosales, J. Roth, and W. Ottenberger, Plasmaphys. Report No. IPP 9/82 (Max-Plank-Inst. Plasma, 1993).

    Google Scholar 

  12. S. Moon et al., Nucl. Mater. Energy 19, 59 (2019).

    Article  Google Scholar 

  13. A. Litnovsky et al., Nucl. Fus. 59, 066029 (2019).

    Article  ADS  Google Scholar 

  14. J. Brooks and J. Allain, Nucl. Fusion 48, 106027 (2008).

    Article  Google Scholar 

  15. V. Kotov, in Proceedings of the 43rd EPS Conference on Plasma Physics, Leuven, Belgium, July 4–8, 2016, P5.051.

  16. www.eirene.de/html/surface_data.html.

  17. T. Sugie et al., J. Nucl. Mater. B 329–333, 1481 (2004).

    Article  ADS  Google Scholar 

  18. A. V. Rogov, Yu. V. Kapustin, A. V. Gorshkov, and S. V. Akhtyrskiy, in Proceedings of the 30th Meeting of the ITPA Diagnostics Topical Group, Novosibirsk, June 21–24, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. N. Andreenko, I. I. Orlovskiy, A. G. Alekseev or A. A. Morozov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. A. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreenko, E.N., Orlovskiy, I.I., Alekseev, A.G. et al. Estimation of the Degradation Rate of the In-Vessel Mirrors for the H-Alpha and Visible Spectroscopy Diagnostics in ITER. Phys. Atom. Nuclei 83, 1083–1092 (2020). https://doi.org/10.1134/S1063778820070029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820070029

Keywords:

Navigation