Skip to main content
Log in

Analysis of the Accuracy of Measuring the Flux Density of All Hydrogen Isotopes from First Wall to Plasma Using the H-Alpha Diagnostics in ITER

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of the analysis of the accuracy of measuring the flux density of all hydrogen isotopes from the first wall of the main vacuum chamber to the ITER tokamak plasma using the high-resolution spectroscopy of Balmer alpha lines of hydrogen isotopes (H-alpha diagnostics) are presented. Under the conditions of the expected high background radiation generated by the divertor stray light and the absence of the possibility of using the optical dumps in ITER, a differential measurement scheme is necessary, which uses the spatial variation of the coefficient of the light reflection from the natural landscape of the first wall. The measurement accuracy analysis is carried out with the help of the method of synthetic diagnostics, which uses the results of the predictive numerical modeling of different modes of hydrogen recycling for simulation of the expected diagnostic signals and determination of the desired parameters by solving an inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. B. Kukushkin, V. S. Neverov, A. G. Alekseev, S. W. Lisgo, and A. S. Kukushkin, Fusion Sci. Technol. 69, 628 (2016).

    Article  Google Scholar 

  2. V. S. Neverov, A. B. Kukushkin, M. F. Stamp, A. G. Alekseev, S. Brezinsek, M. von Hellermann, and JET Contributors, Nucl. Fusion 57, 016031 (2017).

    Article  ADS  Google Scholar 

  3. V. S. Neverov, A. B. Kukushkin, U. Kruezi, M. F. Stamp, H. Weisen, and JET Contributors, Nucl. Fusion 59, 046011 (2019).

    Article  ADS  Google Scholar 

  4. A. B. Kukushkin, V. S. Neverov, M. B. Kadomtsev, V. Kotov, A. S. Kukushkin, M. G. Levashova, S. W. Lisgo, V. S. Lisitsa, V. A. Shurygin, and A. G. Alekseev, J. Phys.: Conf. Ser. 548, 012012 (2014).

    Google Scholar 

  5. V. S. Neverov, A. B. Kukushkin, S. V. Lisgo, A. S. Kukushkin, and A. G. Alekseev, Plasma Phys. Rep. 41, 103 (2015).

    Article  ADS  Google Scholar 

  6. P. Bogen, H. H. Hartwig, E. Hintz, K. Höthker, Y. T. Lie, A. Pospieszczyk, U. Samm, and W. Bieger, J. Nucl. Mater 128–129, 157 (1984).

    Article  ADS  Google Scholar 

  7. K. Behringer, H. P. Summers, B. Denne, M. Forrest, and M. Stamp, Phys. Plasma, Control. Fusion 31, 205 (1989).

    Article  Google Scholar 

  8. A. Pospieszczyk, D. Borodin, S. Brezinsek, A. Huber, A. Kirschner, Ph. Mertens, G. Sergienko, B. Schweer, I. L. Beigman, and L. Vainshtein, J. Phys. B: At. Mol. Opt. Phys. 43, 144017 (2010).

    Article  ADS  Google Scholar 

  9. Ph. Mertens, Plasma Phys. Control. Fusion 43, A349 (2001).

    Article  Google Scholar 

  10. M. B. Kadomtsev, V. Kotov, V. S. Lisitsa, and V. A. Shurygin, in Proceedings of the 39th EPS Conference and 16th International Congress on Plasma Physics, Stockholm, Sweden, July 2–6, 2012 (2012), Vol. 36F, P4.093.http://ocs.ciemat.es/epsicpp2012pap/pdf/P4.093.pdf.

  11. V. S. Lisitsa, M. B. Kadomtsev, V. Kotov, V. S. Neverov, and V. A. Shurygin, Atoms 2, 195 (2014).

    Article  ADS  Google Scholar 

  12. A. B. Kukushkin, V. S. Lisitsa, V. S. Neverov, V. A. Shurygin, C. V. Lisgo, and A. G. Alekseev, in Proceedings of the 45th International Zvenigorod Conference on Plasma Physics and Controlled Thermonuclear Fusion, Zvenigorod, April 2–6, 2018 (PLAZMAIOFAN, Moscow, 2018), p. 326.

  13. A. S. Kukushkin, H. D. Pacher, V. Kotov, G. W. Pacher, and D. Reiter, Fusion Eng. Des. 86, 2865 (2011).

    Article  Google Scholar 

  14. D. Reiter, M. Baelmans, and P. Boerner, Fusion Sci. Technol. 47, 172 (2005). www.eirene.de.

  15. S. Kajita, E. Veshchev, S. Lisgo, R. Reichle, R. Barnsley, M. Walsh, A. Alekseev, A. Gorshkov, D. Vukolov, J. Stuber, and S. Woodruff, Plasma Phys. Control. Fusion 55, 085020 (2013).

    Article  ADS  Google Scholar 

  16. B. J. Braams, PhD Thesis (Rijksuniversitet, Utrecht, 1986).

  17. S. W. Lisgo, P. Börner, A. Kukushkin, R. A. Pitts, A. Polevoi, and D. Reiter, J. Nucl. Mater. 415, 965 (2011).

    Article  ADS  Google Scholar 

  18. S. W. Lisgo and R. A. Pitts, private commun. (2012).

  19. A. B. Kukushkin, V. S. Lisitsa, M. B. Kadomtsev, M. G. Levashova, V. S. Neverov, V. A. Shurygin, V. Kotov, A. S. Kukushkin, S. Lisgo, A. G. Alekseev, A. V. Gorshkov, D. K. Vukolov, K. Yu. Vukolov, and E. Veshchev, in Proceedings of the 24th IAEA FEC, San Diego, 2012, ITR/P5-44.

Download references

ACKNOWLEDGMENTS

We are grateful to K.Yu. Vukolov for the discussion of the results and to E.A. Veshchev, K.Yu. Vukolov, E.N. And-reenko, D.K. Vukolov, A.V. Gorshkov, A.S. Kukushkin, S.W. Lisgo, and A.A. Morozov for cooperation and joint work on the ITER H-alpha (+ Visible) Spectroscopy Diagnostic.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Kukushkin, V. S. Neverov, V. S. Lisitsa, V. A. Shurygin or A. G. Alekseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, A.B., Neverov, V.S., Lisitsa, V.S. et al. Analysis of the Accuracy of Measuring the Flux Density of All Hydrogen Isotopes from First Wall to Plasma Using the H-Alpha Diagnostics in ITER. Phys. Atom. Nuclei 83, 1070–1082 (2020). https://doi.org/10.1134/S106377882007008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882007008X

Keywords:

Navigation