Skip to main content
Log in

Numerical Analysis of the Water-blocking Performance of a Floor with a Composite Structure under Fluid–solid Coupling

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The diversity of geological structure combinations in the coal seam floor makes it difficult to characterize, prevent and control floor water inrush in the Chenghe mining area in the Weibei coalfield, China. Based on a comparative study of the structure of the floor strata and the sedimentary characteristics of the no. 5 coal seam floor in the Chenghe mining area, the floor strata were categorized into four types. Fluid–solid coupling numerical simulation software was used to study floor water-blocking performance. We found that mining failure depth was the shallowest and water-blocking capacity was the best for the “soft-hard-soft” type of floor, followed by two interbeds of soft and hard type floors, while the mining failure depth was the deepest and the water-blocking capacity the worst for the “hard-soft-hard” type of floor. These conclusions were applied to guide the floor grouting reconstruction project at the 22,507 working face in the Dongjiahe coal mine. The “hard-soft-hard” type of floor was transformed into an "interbedded soft and hard" type of floor with a better water-blocking capacity, avoiding blind grouting, reducing grouting costs and the risk of water inrush, and allowing safe mining above the confined aquifer. The research results revealed how floor strata combinations control the water-blocking characteristics of the floor and provides scientific guidance for floor reinforcement and grouting projects.

Zusammenfassung

Die Vielfalt der geologischen Strukturkombinationen im Kohleliegend erschwert die Charakterisierung, Vermeidung und Kontrolle von Sohlenwassereinbrüchen im Bergbaugebiet Chenghe im Weibei-Kohlenrevier in China. Auf der Grundlage einer vergleichenden Studie über die Struktur der Liegendschichten und die sedimentären Eigenschaften des Liegend von Kohlenflöz No. 5 im Chenghe-Bergbaugebiet wurden die Liegendformationen in vier Typen kategorisiert. Zur Untersuchung des Wassersperrwirkung des Liegend wurde eine numerische Software zur Fluid-Festkörper-Simulation verwendet. Wir stellten fest, dass für den "weich-hart-weich"-Liegendtyp die Verbruchstiefe im Bergbau am geringsten und die Wassersperrwirkung am besten war, gefolgt von zwei Schichten aus weichen und harten Schichten, während die Verbruchstiefe im Bergbau am tiefsten und die Wassersperrwirkung am schlechtesten für den "hart-weich-harten" Liegendtyp war. Diese Schlussfolgerungen dienten als Richtschnur für das Sanierungsinjektionsprojekt im Abbaubetrieb 22507 in der Dongjiahe-Kohlengrube. Der "hart-weich-hart"-Liegendtyp wurde in einen "eingebettet weich und hart"- Liegendtyp mit einer besseren Wassersperrwirkung umgewandelt, wodurch Blindverpressungen vermieden, die Verpressungskosten und das Risiko eines Wassereinbruchs verringert und ein sicherer Abbau über dem begrenzten Grundwasserleiter ermöglicht wurden. Die Forschungsergebnisse zeigten, wie geologischen Strukturkombinationen im Kohleliegend die Dichteigenschaften der Sohle bestimmen und bieten eine wissenschaftliche Anleitung für Liegendverstärkungs- und Injektionsprojekte.

Resumen

La diversidad de combinaciones de estructuras geológicas en el suelo de la veta de carbón hace difícil caracterizar, prevenir y controlar la irrupción de agua en el suelo en la zona minera de Chenghe, en el yacimiento de carbón de Weibei (China). Basándose en un estudio comparativo de la estructura de los estratos del suelo y las características sedimentarias del suelo de la veta de carbón N° 5 en la zona minera de Chenghe, los estratos del suelo se clasificaron en cuatro tipos. Se utilizó un software de simulación numérica de acoplamiento fluido-sólido para estudiar el funcionamiento de los bloqueos de agua del suelo. Se encontró que el tipo de suelo "blando-duro-blando", seguida de dos intercalaciones de suelos de tipo blando y duro, tenía la falla minera menos profunda y con la mejor capacidad de bloqueo de agua. En cambio, el suelo "duro-blando-duro" tenía la falla minera más profunda y la peor capacidad de bloqueo de agua. Estas conclusiones se aplicaron para orientar el proyecto de reconstrucción de la lechada del suelo en el frente de trabajo de 22,507 en la mina de carbón de Dongjiahe. El tipo de suelo "duro-blando-duro" se transformó en un tipo de suelo "blando y duro intercalado" con una mejor capacidad de bloqueo de agua, que evita la lechada ciega, reduciendo sus costos y el riesgo de irrupción de agua; de ese modo, permite una minería segura por encima del acuífero confinado. Los resultados de la investigación revelaron cómo las combinaciones de estratos del suelo controlan las características de bloqueo de agua del suelo y proporcionan una orientación científica para los proyectos de refuerzo del suelo y de lechada

数值分析流固耦合作用下底板复合结构阻水性能

渭北煤田 (中国) 澄合矿区煤层底板地质构造多种多样, 给底板突水的表征、预防和控制带来困难。基于澄合矿区5号煤层底板地层结构和沉积特征的对比, 煤层底板分为四种类型。利用流固耦合数值模拟软件研究了底板阻水性能。发现 “软-硬-软” 底板类型的底板破坏深度最浅和阻水性能最好, 然后是两种软与硬互层类型, “硬-软-硬” 底板类型的底板破坏深度最大和阻水性能最差。结论用于指导董家河煤矿22507工作面底板注浆改造工程。“硬-软-硬”型底板改造为具有较好的阻水能力的“软-硬互层”型, 避免了盲目注浆, 降低了注浆成本和突水风险, 实现了承压含水层上煤层安全开采。研究揭示了底板地层组合如何控制底板阻水性能, 能够为底板加固注浆工程提供科学指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bukowski P (2010) Determining of safety pillars in the vicinity of water reservoirs in mine workings within abandoned mines in the upper Silesian coal basin (USCB). J Min Sci 46(3):57–69. https://doi.org/10.1007/s10913-010-0037-2

    Article  Google Scholar 

  • Bukowski P (2011) Water hazard assessment in active shafts in upper Silesian Coal Basin mines. Mine Water Environ 24(4):302–311. https://doi.org/10.1007/s10230-011-0148-2

    Article  Google Scholar 

  • Huang QS, Cheng JL (2017) Research on stress distribution and failure characteristics of coal mining floor in soft-hard alternant strata. Rock Soil Mech 38(S1):36–42. https://doi.org/10.16285/j.rsm.2017.S1.004[inChinese]

    Article  Google Scholar 

  • Khanal M, Guo H, Adhikary D (2019) 3D numerical study of underground coal mining induced strata deformation and subsequent permeability change. Geotech Geol Eng 37:235–249. https://doi.org/10.1007/s10706-018-0605-9

    Article  Google Scholar 

  • Li A (2012) Water inrush mechanism of seepage and stress coupling failure of floor under mining under pressure and its engineering application. In: PhD Diss, Xi'an University of Science and Technology in Chinese

  • Li A (2015) Water inrush mechanism and application of mining floor failure in confined water body of Weibei coalfield. China University of Mining and Technology Press, Xuzhou (in Chinese)

    Google Scholar 

  • Li B, Wu Q (2019) Catastrophic evolution of water inrush from a water-rich fault in front of roadway development: a case study of the Hongcai coal mine. Mine Water Environ 38(2):421–430. https://doi.org/10.1007/s10230-018-00584-z

    Article  Google Scholar 

  • Li LC, Tang CA, Zuo YJ, Li G, Liu C (2009) Mechanism of hysteretic groundwater inrush from coal seam floor with karstic collapse columns. J China Coal Soc 34(9):1212–1216 (in Chinese)

    Google Scholar 

  • Li A, Liu Y, Mou L (2015) Impact of the panel width and overburden depth on floor damage depth in no. 5 Coal seam of Taiyuan Group in Chenghe mining area. Electron J Geotech Eng 20(6):1603–1617

    Google Scholar 

  • Meng XX, Liu WT, Zhao JY, Ding XY (2019) In situ investigation and numerical simulation of the failure depth of an inclined coal seam floor: a case study. Mine Water Environ 38(3):686–694. https://doi.org/10.1007/s10230-019-00596-3

    Article  Google Scholar 

  • Mou L, Dong SL, Zhou WF, Wang W, Li A, Shi ZY (2020) Data analysis and key parameters of typical water hazard control engineering in coal mines of China. Mine Water Environ 39(2):331–344. https://doi.org/10.1007/s10230-020-00684-9

    Article  Google Scholar 

  • Yin HY, Wei JC, Lefticariu L, Guo JB, Xie DL, Li ZL, Zhao P (2016) Numerical simulation of water flow from the coal seam floor in a deep longwall mine in China. Comput Geotech 32(2):243–252. https://doi.org/10.1007/s10230-016-0385-5

    Article  Google Scholar 

  • Zeng QL, Liu ZL, Wang T, Gao Y, Zhuang Z (2018) Numerical modeling of the simultaneous propagation of multiple hydraulic fractures with fluid lags. Eng Comput 36(8):2694–2713. https://doi.org/10.1108/EC-10-2018-0461

    Article  Google Scholar 

  • Zhai XR, Zhang HM, Dou ZS, Wu JW, Shen SH, Zhou SQ (2016) Study on fluid-solid coupling mechanism for water resistance effect of coal floor based on different combination of rock strata. J Saf Sci Technol 12(07):16–21 (in Chinese)

    Google Scholar 

  • Zhu SY, Cao DT, Zhou HY, Yang CW, Liu JG (2014) Restrictive function of lithology and its composite structure on deformation and failure depth of mining coal seam floor. J Min Saf Eng 31(1):90–96 (in Chinese)

    Google Scholar 

  • Zhu NN, Yao DX, Lu HF, Fang XY, Zhang H, Xue L (2017) Lithological combination effects study of mining floor. Coal Technol 36(11):44–47. https://doi.org/10.13301/j.cnki.ct.2017.11.017 (in Chinese)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial assistance provided by the Open Projects of Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources (KF2018-2), the Postdoctoral Research Foundation of China (2016M590961), the National Natural Science Foundation of China (41402265), the Natural Science Foundation of Shaanxi Province (2016JM4014) and the Natural Science Foundation of Shaanxi Province (2020JZ-52).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Mu, Q., Ma, L. et al. Numerical Analysis of the Water-blocking Performance of a Floor with a Composite Structure under Fluid–solid Coupling. Mine Water Environ 40, 479–496 (2021). https://doi.org/10.1007/s10230-021-00758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-021-00758-2

Keywords

Navigation