Skip to main content
Log in

Potential distribution of the dinoflagellate Peridinium quadridentatum and its blooms in continental shelves globally: an environmental and geographic approach

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This work was designed to analyze the current ecological niche of Peridinium quadridentatum var. quadridentatum and its harmful algal blooms (HABs) using species distribution models. A maximum entropy model was fitted to samples of occurrence records gathered from the scientific literature and using environmental data for the continental shelves of the world obtained from BIO-ORACLE. The geographic models plotted were sea surface temperature vs. salinity, nitrate vs. phosphate concentration, and radiation vs. chlorophyll-a concentration, to describe the environmental space occupied by P. quadridentatum. Our results show that P. quadridentatum is a dinoflagellate of wide thermohaline tolerance linked to sites near coastal areas, which might be related to some life-cycle stages. Both presence (pENM) and blooms (bENM) ecological niche models show that this species prospers near tropical and temperate latitudes. The pENM predicts a broader distribution range than the bENM, suggesting that some sites with favorable conditions for the occurrence of this species are not suitable for its proliferation and formation of HABs. The bENM predicts potential HABs limited in eutrophic areas, but not in hyper-eutrophic areas. As validation of the models, some occurrence records of this species (i.e., West Africa, Peru, and Fiji) were not included in the initial analyses. As a result, the pENM predicts its occurrence in those sites, so the models for current potential distribution and blooms incidences are credible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Abé TH (1927) Report of the biological survey of Mutsu Bay. 3. Notes on the protozoan fauna of Mutsu Bay. I. Peridiniales Sci Rep Tôhoku Imper Univ 2:382–438

    Google Scholar 

  • Ajani P, McGinty N, Finkel ZV, Irwin AJ (2018) Phytoplankton realized niches track changing oceanic conditions at a long-term coastal station off Sydney Australia. Front Mar Sci 5:285. https://doi.org/10.3389/fmars.2018.00285

    Article  Google Scholar 

  • Aké-Castillo JA, Vázquez G (2011) Peridinium quinquecorne var. trispiniferum var. nov. (Dinophyceae) from a brackish environment. Acta Bot Mex 94:125–140

    Google Scholar 

  • Aké-Castillo JA, Okolodkov Y, Rodríguez-Gómez CF, Campos-Bautista G (2014) Florecimientos algales nocivos en Veracruz: especies y posibles causas (2002–2012). In: Botello AV, Rendón-von Osten J, Benítez JA, Gold-Bouchot G (eds) Golfo de México. Contaminación e impacto ambiental: diagnóstico y tendencias. UAC, UNAM-ICMyL, CINVESTAV-Unidad Mérida, México, pp 133–146

    Google Scholar 

  • Al-Hashmi K, Al-Azri A, Claereboudt MR, Piontkovski S, Amin SMN (2013) Phytoplankton community structure of a mangrove habitat in the arid environment of Oman: the dominance of Peridinium quinquecorne. J Fish Aquat Sci 8:595–606

    Google Scholar 

  • Alonso-Rodríguez R (2004) Hidrología y condiciones ambientales que determinan la proliferación de dinoflagelados causantes de marea roja en la bahía de Mazatlán, Sin. México. Doctorate thesis, Centro de Investigaciones Biológicas del Noroeste, La Paz

  • Anderson RP (2016) When and how should biotic interactions be considered in models of species niches and distributions? J Biogeogr 44:8–17. https://doi.org/10.1111/jbi.12825

    Article  Google Scholar 

  • Araújo H, Bastos-Santos J, Rodrigues PC, Ferreira M, Pereira A, Henriques AC, Monteiro SS, Eira C, Vingada J (2017) The importance of Portuguese continental shelf waters to balearic shearwaters revealed by aerial census. Mar Biol 164:55. https://doi.org/10.1007/s00227-017-3089-x

    Article  Google Scholar 

  • Auby I, D’Amico F, Meteigner C, Ganthy F, Maurer D, Gouriou L, Rigouin L, Rumebe M, Tournaire MP, Trut G, Oger-Jeanneret H, Guesdon S, Derrien A, Chabirand JM, Charpentier G, Genauzeau S, Schmitt A, Geairon P, Grizon J, Seugnet JL, Thomas G, Bechemin C, Soudant D, Lamoureux A, Beaugrand P, Noureau B, Michel V, Dupin M, Bariou J, Landier P, Miguel V (2015) Suivi “hydrologie” et “phytoplankton” des masses d’eau du bassin hydrographique Adour-Garonne sur la période 2009–2014. IFREMER, France, p 190. http://archimer.ifremer.fr/doc/00280/39141/

  • Azanza RV, David LT, Borja RT, Baula IU, Fukuyo Y (2008) An extensive Cochlodinium bloom along the western coast of Palawan, Philippines. Harmful Algae 7:324–330

    Google Scholar 

  • Band-Schmidt CJ, Zumaya-Higuera MG, López-Cortés DJ, Leyva-Valencia I, Quijano-Scheggia SI, Hernández-Guerrero CJ (2020) Allelopathic effects of Margalefidinium polykrikoides and Gymnodinium impudicum in the growth of Gymnodinium catenatum. Harmful Algae 96:101846. https://doi.org/10.1016/j.hal.2020.101846

    Article  CAS  PubMed  Google Scholar 

  • Barón-Campis SA, Hernández-Becerril DU, Juárez-Ruíz NO, Ramírez-Camarena C (2005) Marea roja producida por el dinoflagelado Peridinium quinquecorne en Veracruz, México (oct-nov, 2002): morfología del agente causal. Hidrobiológica 15:73–78

    Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Townsend Peterson A, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

    Article  Google Scholar 

  • Brun P, Vogt M, Payne MR, Gruber N, O’Brien CJ, Buitenhuis ET, Le Quéré C, Leblanc K, Luo Y-W (2015) Ecological niches of open ocean phytoplankton taxa. Limnol Oceanogr 60:1020–1038

    Google Scholar 

  • Busch M, Caron D, Moorthi S (2019) Growth and grazing control of the dinoflagellate Lingulodinium polyedrum in a natural plankton community. Mar Ecol Prog Ser 611:45–58. https://doi.org/10.3354/meps12852

    Article  CAS  Google Scholar 

  • Caroppo C (2000) The contribution of picophytoplankton to community structure in a Mediterranean brackish environment. J Plankton Res 22:381–397

    Google Scholar 

  • Cobos ME, Peterson AT, Osorio-Olvera L, Jiménez-García D (2019) An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol Inform 53:100983. https://doi.org/10.1016/j.ecoinf.2019.100983

    Article  Google Scholar 

  • Collos Y, Bec B, Abadie E (2012) Thau Lagoon. In: O’Brien TD, Li WKW, Morán XAG (eds) ICES phytoplankton and microbial plankton status report 2009/2010. International Council for the Exploration of the Sea, Copenhagen, pp 141–143

    Google Scholar 

  • Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. PNAS 106:19651–19658. https://doi.org/10.1073/pnas.0901650106

    Article  PubMed  Google Scholar 

  • Cortés J, Vargas-Castillo R, Nivia-Ruiz J (2012) Marine biodiversity of Bahía Culebra, Guanacaste, Costa Rica: published records. Rev Biol Trop 60:39–71

    Google Scholar 

  • Merino-Virgilio FC, Okolodkov Y, Aguilar-Trujillo AC, Osorio-Moreno I, Herrera-Silveira JA (2014) Florecimientos algales nocivos en las aguas costeras del norte de Yucatán (2001–2013). In: Botello AV, Rendón-von Osten J, Benítez JA, Gold-Bouchot G (eds) Golfo de México. Contaminación e impacto ambiental: diagnóstico y tendencias. UAC, UNAM-ICMyL, CINVESTAV-Unidad Mérida, México, pp 161–180

    Google Scholar 

  • Demarcq H, Somoue L (2015) Phytoplankton and primary productivity off northwest Africa. In: Valdés L, Déniz-González I (eds) Oceanographic and biological features in the Canary Current Large Marine Ecosystem, IOC-UNESCO. IOC-UNESCO, París, pp 161–174

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    CAS  PubMed  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • ESRI (2014) ArcGIS Desktop. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Faust MA, Litaker RW, Vandersea MW, Kibler SR, Tester PA (2005) Dinoflagellate diversity and abundance in two belizean coral-reef mangrove lagoons: a test of Margalef´s Mandala. Atoll Res Bull 534:103–132

    Google Scholar 

  • Flynn KJ, Mitra A, Glibert PM, Burkholder JM (2018) Mixotrophy in harmful algal blooms: by whom, on whom, when, why, and what next. In: Glibert PM, Berdalet E, Burford MA, Pitcher GC, Zhou M (eds) Global ecology and oceanography of harmful algal blooms. Springer International Publishing, Cham, pp 113–132

    Google Scholar 

  • Frings PJ, Clymans W, Fontorbe G, De la Rocha CL, Conley DJ (2016) The continental Si cycle and its impact on the ocean Si isotope budget. Chem Geol 425:12–36

    CAS  Google Scholar 

  • Gadea I, Rodilla M, Sospedra J, Falco S, Morata T (2013) Seasonal dynamics of the phytoplankton community in the Gandia coastal area, southern gulf of Valencia. Thalassas 29:35–58

    Google Scholar 

  • Gárate-Lizárraga I, Muñetón-Gómez MS, Maldonado-López V (2006) Florecimiento del dinoflagelado Gonyaulax polygramma frente a la Isla Espíritu Santo, Golfo de California (Octubre 2004). Rev Invest Mar 27:31–39

    Google Scholar 

  • Gárate-Lizárraga I, Muñetón-Gómez MS (2008) Bloom of Peridinium quinquecorne Abé in la Ensenada de La Paz, Gulf of California (July 2003). Acta Bot Mex 83:33–47

    Google Scholar 

  • Gardiner WE, Dawes CJ (1987) Seasonal variation of nannoplankton flagellate densities in Tampa Bay, Florida. Bull Mar Sci 40:231–239

    Google Scholar 

  • Glibert PM (2017) Eutrophication, harmful algae and biodiversity—challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull 124:591–606

    CAS  PubMed  Google Scholar 

  • Glibert PM, Berdalet E, Burford MA, Pitcher GC, Zhou M (2018) Global ecology and oceanography of harmful algal blooms. Springer Berlin Heidelberg, New York

    Google Scholar 

  • Gomez JJ, Cassini MH (2014) Analysis of environmental correlates of sexual segregation in northern elephant seals using species distribution models. Mar Biol 161:481–487. https://doi.org/10.1007/s00227-013-2337-y

    Article  CAS  Google Scholar 

  • Gregg WW, Rousseaux CS (2019) Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environ Res Lett 14:124011. https://doi.org/10.1088/1748-9326/ab4667

    Article  CAS  Google Scholar 

  • Hao Y, Tang D, Boicenco L, Wang S (2016) Environmental ecological response to increasing water temperature in the Daya Bay, southern China in 1982–2012. Nat Resour 7:184–192

    Google Scholar 

  • Heil CA, Glibert PM, Fan C (2005) Prorocentrum minimum (Pavillard) Schiller a review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4:449–470. https://doi.org/10.1016/j.hal.2004.08.003

    Article  CAS  Google Scholar 

  • Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan WP, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A, Magnien R, Marshall HG, Sellner K, Stockwell DA, Stoecker DK, Suddleson M (2008) Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 8:3–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horiguchi T, Pienaar RN (1991) Ultrastructure of a marine dinoflagellate, Peridinium quinquecorne Abé (Peridiniales) from South Africa with particular reference to its chrysophyte endosymbiont. Bot Mar 34:123–131

    Google Scholar 

  • Horstmann U (1980) Observations on the peculiar diurnal migration of a red tide Dinophyceae in tropical shallow waters. J Phycol 16:481–485

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Bio 22:415–427

    Google Scholar 

  • Irwin AJ, Nelles AM, Finkel ZV (2012) Phytoplankton niches estimated from field data. Limnol Oceanogr 57:787–797

    Google Scholar 

  • Ismael AA (2014) Coastal engineering and harmful algal blooms along Alexandria coast. Egypt Egypt J Aqu Res 40:125–131

    Google Scholar 

  • Karlson B (2008) Peridinium quinquecorne. Report of the ICES-IOC working group on harmful algal bloom dynamics (WGHABD). ICES, Galway, p 64

  • Kegel JU, Del Amo Y, Costes L, Medlin LK (2013) Testing a microarray to detect and monitor toxic microalgae in Arcachon Bay in France. Microarrays 2:1–23

    PubMed  PubMed Central  Google Scholar 

  • Kim HS, Kim SH, Jung MM, Lee JB (2013) New record of dinoflagellates around Jeju Island. J Ecol Environ 36:273–291

    Google Scholar 

  • Li Y, Meseck SL, Dixon MS, Rivara K, Wikfors GH (2012) Temporal variability in phytoplankton removal by a commercial, suspended eastern oyster nursery and effects on local plankton dynamics. J Shellfish Res 31:1077–1089

    CAS  Google Scholar 

  • Li Y, Meseck SL, Dixon MS, Rose JM, Smith BC, Wikfors GH (2015) Short term effects of a commercial eastern oyster nursery upon nutrient and plankton dynamics of a coastal embayment: observations from mesocosm experiments. Aquacult Res 46:2049–2064

    CAS  Google Scholar 

  • Liu C, Newell G, White M (2015) On the selection of thresholds for predicting species occurrence with presence-only data. Ecol Evol 6:337–348

    PubMed  PubMed Central  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Loza Álvarez S, Lugioyo Gallardo GM (2009) Diversidad del microfitoplancton en las aguas océanicas alrededor de Cuba. Rev Mar y Cost 1:29–47

    Google Scholar 

  • Madariaga I, Orive E, Boalch GT (1989) Primary production in the Gernika Estuary during a summer bloom of the dinoflagellate Peridinium quinquecorne Abé. Bot Mar 32:159–165

    Google Scholar 

  • Meichtry de Zaburlín N, Vogler RE, Molina MJ, Llano VM (2016) Potential distribution of the invasive freshwater dinoflagellate Ceratium furcoides (Levander) Langhans (Dinophyta) in South America. J Phycol 52:200–208

    PubMed  Google Scholar 

  • Melo-Merino SM, Reyes-Bonilla H, Lira-Noriega A (2020) Ecological niche models and species distribution models in marine environments: a literature review and spatial analysis of evidence. Ecol Model 415:108837. https://doi.org/10.1016/j.ecolmodel.2019.108837

    Article  Google Scholar 

  • Naik RK (2010) Studies on phytoplankton with reference to dinoflagellates. Doctorate thesis, Goa University- National Institute of Oceanography

  • Nikolaev S, Zaharia T (2013) Report of the state of the marine and coastal environment in 2012. Cercetări Marine, Rome, pp 5–138

    Google Scholar 

  • NOAA (2010) Gulf of Mexico harmful algal bloom bulletin. Region Southwest Florida 36. p 3. https://cdn.tidesandcurrents.noaa.gov/HAB_GOMX/bulletins/HAB20100513_2010036_SFL.pdf

  • Nuccio C, Melillo C, Massi L, Innamorati M (2003) Phytoplankton abundance, community structure and diversity in the eutrophicated Orbetello lagoon (Tuscany) from 1995 to 2001. Oceanol Acta 26:15–25

    CAS  Google Scholar 

  • Okolodkov YB (2005) The global distributional patterns of toxic, bloom dinoflagellates recorded from the Eurasian Arctic. Harmful Algae 4:351–369. https://doi.org/10.1016/j.hal.2004.06.016

    Article  Google Scholar 

  • Okolodkov Y, Campos-Bautista G, Gárate-Lizárraga I, González-González JAG, Hoppenrath M, Arenas-Fuentes V (2007) Seasonal changes of benthic and epiphytic dinoflagellates in the Veracruz reef zone, Gulf of Mexico. Aquat Microb Ecol 47:223–237

    CAS  Google Scholar 

  • Okolodkov Y, Gárate-Lizárraga I, Campos-Bautista G (2016) Circadian rhythm of a red-tide dinoflagellate Peridinium quadridentatum in the port of Veracruz, Gulf of Mexico, its thecal morphology, nomenclature and geographical distribution. Mar Pollut Bull 108:289–296

    CAS  PubMed  Google Scholar 

  • Osorio-Olvera L (2016) NicheToolbox: A web tool for exploratory data analysis and niche modeling. http://shiny.conabio.gob.mx:3838/nichetoolb2.

  • Paknia O, Schierwater B (2015) Global habitat suitability and ecological niche separation in the Phylum Placozoa. PLoS ONE 10:e0140162. https://doi.org/10.1371/journal.pone.0140162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauly K, Jupp BP, De Clerck O (2011) Modelling the distribution and ecology of Trichosolen blooms on coral reefs worldwide. Mar Biol 158:2239–2246

    Google Scholar 

  • Penna A, Fraga S, Battocchi C, Casabianca S, Giacobbe MG, Riobó P, Vernesi C, Maggs C (2010) A phylogeographical study of the toxic benthic dinoflagellate genus Ostreopsis Schmidt. J Biogeogr 37:830–841

    Google Scholar 

  • Pérez Olmedo L, Capistrán Barradas A, Orduña-Medrano RE (2015) Composición, abundancia y proliferación de especies tóxicas de dinoflagelados causantes de marea roja en la zona costera de Tuxpan, Veracruz. In: Libro de resúmenes del XIX Reunión Nacional de la Sociedad Mexicana de Planctología. p 190

  • Pertola S, Faust MA, Kuosa H (2006) Survey on germination and species composition of dinoflagellates from ballast tanks and recent sediments in ports on the South Coast of Finland, North-Eastern Baltic Sea. Mar Pollut Bull 52:900–911

    CAS  PubMed  Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Phlips EJ, Badylak S, Christman M, Wolny J, Brame J, Garland J, Hall L, Hart J, Landsberg J, Lasi M, Lockwood J, Paperno R, Scheidt D, Staples A, Steidinger K (2011) Scales of temporal and spatial variability in the distribution of harmful algae species in the Indian River Lagoon, Florida, USA. Harmful Algae 10:277–290

    Google Scholar 

  • Prabhudessai S, Vishal CR, Rivonker CU (2019) Biotic interaction as the triggering factor for blooms under favourable conditions in tropical estuarine systems. Environ Monit Assess 191:54. https://doi.org/10.1007/s10661-018-7172-7

    Article  CAS  PubMed  Google Scholar 

  • Proença LA, Odebrecht C, Mafra-Junior LL, Tamanaha MS (2006) Floração de Peridinium quinquecorne Abé na Ensenada de Balneario Camburiú, S. C. In: Book of abstracts del Simposio Latino-americano sobre Algas Nocivas, North Pacific Marine Science Organization. Itajai, Santa Catarina, Brasil.,

  • Robinson NM, Nelson WA, Costello MJ, Sutherland JE, Lundquist CJ (2017) A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front Mar Sci 4:421. https://doi.org/10.3389/fmars.2017.00421

    Article  Google Scholar 

  • Rodríguez-Gómez CF, Aké-Castillo JA, Vázquez G (2019b) Short-term responses of the bloom-forming dinoflagellate Peridinium quadridentatum in tropical coastal waters: environmental variables and phytoplankton community. J Coastal Res Special issue 92:22–32

    Google Scholar 

  • Rodríguez-Gómez CF, Vázquez G, Aké-Castillo JA, Band-Schmidt CJ, Moreno-Casasola P (2019a) Physicochemical factors related to Peridinium quadridentatum (F. Stein) Hansen (Dinophyceae) blooms and their effect on phytoplankton in Veracruz Mexico. Estuar Coast Shelf Sci 230:106412. https://doi.org/10.1016/j.ecss.2019.106412

    Article  CAS  Google Scholar 

  • Saburova M, Al-Yamani F, Polikarpov I (2009) Biodiversity of free-living flagellates in Kuwait’s intertidal sediments. BioRisk 3:97–110

    Google Scholar 

  • Satta CT, Anglés S, Garcés E, Luglié A, Padedda BM, Sechi N (2010) Dinoflagellate cysts in recent sediments from two semi-enclosed areas of the Western Mediterranean Sea subject to high human impact. Deep-Sea Res PT II 57:256–267

    Google Scholar 

  • Seixas CE (2010) A scientific note on the presence of dinoflagellate Peridinium quinquecorne Abé in the Gulf of Montijo, Panama. Tecnociencia 12:117–121

    Google Scholar 

  • Shamsudin L, Awang A, Ambak A, Ibrahim S (1996) Dinoflagellate bloom in tropical fish ponds of coastal waters of the south China Sea. Environ Monit Assess 40:303–311

    CAS  PubMed  Google Scholar 

  • Shelford VE (1931) Some concepts of bioecology. Ecology 12:455–467

    Google Scholar 

  • Shumway SE, Burkholder JM, Morton SL (2018) Harmful Algal Blooms: A compendium desk reference. John Wiley & Sons, New Jersey

    Google Scholar 

  • Smayda TJ (1997) What is a bloom? a commentary. Limnol Oceanogr 42:1132–1136

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x

    Article  PubMed  Google Scholar 

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. PNAS 106:19644–19650. https://doi.org/10.1073/pnas.0901637106

    Article  PubMed  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv Inform 2:1–10

    Google Scholar 

  • Soberón J, Osorio-Olvera L, Peterson T (2017) Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Rev Mex Biodiv 88:437–441. https://doi.org/10.1016/j.rmb.2017.03.011

    Article  Google Scholar 

  • Spatharis S, Dolapsakis NP, Economou-Amilli A, Tsirtsis G, Danielidis DB (2009) Dynamics of potentially harmful microalgae in a confined Mediterranean Gulf—Assessing the risk of bloom formation. Harmful Algae 8:736–743

    Google Scholar 

  • Su-Myat M-S-H-T, Matsuoka K, Khin-Ko-Lay KK (2012) Phytoplankton surveys off the southern Myanmar coast of the Andaman Sea: an emphasis on dinoflagellates including potentially harmful species. Fish Sci 78:1091–1106

    CAS  Google Scholar 

  • Taylor FJR, Hoppenrath M, Saldarriaga JF (2008) Dinoflagellate diversity and distribution. Biodivers Conserv 17:407–418. https://doi.org/10.1007/s10531-007-9258-3

    Article  Google Scholar 

  • Tolomio C, Moschin E (1995) Y a-t-il des microalgues nuisibles dans la lagune de Venise? (Période d’observation : 1988–1993). Mar Life 5:3–9

    Google Scholar 

  • Tolomio C, Andreoli C, Moro I, Moschin E, Scarabel L, Masiero L (1996) Communautés phytoplanctoniques dans le bassin méridional de la lagune de Venise (février 1991 - janvier 1993). Mar Life 6:3–14

    Google Scholar 

  • Townhill BL, Tinker J, Jones M, Pitois S, Creach V, Simpson SD, Dye S, Bear E, Pinnegar JK (2018) Harmful algal blooms and climate change: exploring future distribution changes. ICES J Mar Sci 75:1882–1893

    Google Scholar 

  • Trigueros JM, Orive E (2000) Tidally driven distribution of phytoplankton blooms in a shallow, macrotidal estuary. J Plankton Res 22:969–986

    Google Scholar 

  • Trigueros JM, Orive E (2001) Seasonal variations of diatoms and dinoflagellates in a shallow, temperate estuary, with emphasis on neritic assemblages. Hydrobiologia 444:119–133

    Google Scholar 

  • Turki TS, El Abed A (2001) On the presence of potentially toxic algae in the lagoons of Tunisia. Harmful Algal News 22:10

    Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol Biogeogr 21:272–281. https://doi.org/10.1111/j.1466-8238.2011.00656.x

    Article  Google Scholar 

  • Uitz J, Claustre H, Gentili B, Stramski D (2010) Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations. Global Biogeochem Cycles 24:3016–3035

    Google Scholar 

  • Stein F (1883) Der Organismus der Infusionsthiere. III. Abt Der Organismus der Arthodelen Flagellaten. II. Hälfte Die Naturgeschichte der Arthrodelen Flagellaten. Einleitung und Eklärung der Abbildungen. Wilheim Engelmann, Leipzig

    Google Scholar 

  • Wang W-L, Moore JK, Martiny AC, Primeau FW (2019) Convergent estimates of marine nitrogen fixation. Nature 566:205–211

    CAS  PubMed  Google Scholar 

  • Yahia-Kéfi OD, Souissi S, Gómez F, Daly Yahia MN (2005) Spatio-temporal distribution of the dominant diatom and dinoflagellate species in the Bay of Tunis (SW Mediterranean Sea). Medit Mar Sci 6:17–34

    Google Scholar 

  • Yan T, Ming Jiang Z, Jing Zhong Z (2002) A national report on harmful algal blooms in China. In: Taylor FJR, Trainer VL (eds) Harmful algal blooms in the PICES region of the North Pacific. Sidney, Canada, BC, pp 21–37

  • Yasakova ON (2013) The annual dynamics of the phytoplankton in the Novorossiysk bay in 2007. Mors’ kyi Ekolohichnyi Zhurnal 12:92–102

    Google Scholar 

  • Yu J, Tang DL, Oh IS, Yao LJ (2007) Response of harmful algal blooms to environmental changes in Daya Bay, China. Terr Atmos Ocean Sci 18:1011–1027

    Google Scholar 

  • Zhifang X, Ying C, Xi M, Fujiang W, Zhijian Z (2016) Phytoplankton community diversity is influenced by environmental factors in the coastal East China Sea. Eur J Phycol 51:107–118

    Google Scholar 

Download references

Acknowledgments

The Instituto de Ecología, A.C. (project 902-11-280) and CEMIE-Océano provided financial support. Rosario Landgrave from Instituto de Ecología, A.C. advised on the use of the GIS. J. L. Flores and M. Martinez assisted in georeferencing presence records. Suggestions by J. L. Parra and M. Favila are highly appreciated. CFRG and CAML received Ph.D. scholarships from the National Science and Technology Council. María Elena Sánchez-Salazar translated the manuscript into English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos F. Rodríguez-Gómez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: S. Shumway.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Gómez, C.F., Vázquez, G., Maya-Lastra, C.A. et al. Potential distribution of the dinoflagellate Peridinium quadridentatum and its blooms in continental shelves globally: an environmental and geographic approach. Mar Biol 168, 29 (2021). https://doi.org/10.1007/s00227-021-03825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03825-y

Navigation