Skip to main content
Log in

Efficient Photocatalytic and Antimicrobial Behaviour of Zinc Oxide Nanoplates Prepared By Hydrothermal Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this project, the prime focus was to synthesize zinc oxide nanoplates (ZnO-Nps) by a reliable, simple, and low cost facile hydrothermal method. Zinc acetate was used as major precursors; the synthesis was standardized in a 100 mL autoclave, at 180 °C for 24 h which results in nanoplates with 150–300 nm width and thickness 10–60 nm size and mesoporous nature with a specific surface area 126 cm2 g−1. The prepared sample was characterized by X-ray powder diffraction (XRPD), scaning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive microscopy (EDS), Fourior transfer infrared (FTIR) spectroscopy, X-ray photo electron microscopy (XPS), Brunauer–Emmett–Teller (BET), Photoluminance (PL), and Electrochemical impedance spectroscopy (EIS) techniques. For application purposes, photocatalytic and antimicrobial activities of ZnO-Nps were studied systematically. The material was made photo-active under visible light irradiation for the degradation of the Methyl orange dye in aqueous media. The antimicrobial activity of ZnO-Nps was checked by time kill method, presented the inhibition of growth against clinical isolates of Methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) after 24 h. However, 12.5 and 6.25 µg is minimal inhibitory concentration (MIC) and 25 and 12.5 µg minimal bactericidal concentration (MBC) of ZnO-Nps against MRSA and E. coli respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. A. Shad, et al. (2019). Photocatalytic degradation performance of cadmium tungstate (CdWO4) nanosheets-assembly and their hydrogen storage features. Ceram. Int. 45, 19015–19021.

    CAS  Google Scholar 

  2. M. M. Sajid, et al. (2019). Fast Surface charge transfer with reduced band gap energy of FeVO4/graphene nanocomposite and study of its electrochemical property and enhanced photocatalytic activity. Arab. J. Sci. Eng. 44, 6659–6667.

    CAS  Google Scholar 

  3. Y. Li, X. Xiao, and Z. Ye (2019). Fabrication of BiVO4/RGO/Ag3PO4 ternary composite photocatalysts with enhanced photocatalytic performance. Appl. Sur. Sci. 467, 902–911.

    Google Scholar 

  4. M. M. Sajid, et al. (2018). Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using a BiVO4/FeVO4 heterojunction composite. RSC Adv. 8 (42), 23489–23498.

    CAS  Google Scholar 

  5. J. Zhu, et al. (2013). Magnetic nanocomposites for environmental remediation. Adv. Powder Technol. 24 (2), 459–467.

    CAS  Google Scholar 

  6. A. Ashour, et al. (2006). Physical properties of ZnO thin films deposited by spray pyrolysis technique. App. Sur. Sci. 252 (22), 7844–7848.

    CAS  Google Scholar 

  7. L. Zhang, et al. (2012). Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis. Mater. Chem. Phys. 136 (2–3), 897–902.

    CAS  Google Scholar 

  8. S. G. Babu, et al. (2019). Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/rGO. Ultrason. Sonochem. 50, 218–223.

    CAS  PubMed  Google Scholar 

  9. J. He, et al. (2019). Superoxide/peroxide chemistry extends charge carriers lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis. J. Am. Chem. Soc. 141 (4), 5798–5807.

    CAS  PubMed  Google Scholar 

  10. S. Kumar, et al., Photocatalytic degradation of organic pollutants in water using graphene oxide composite,. A new generation material graphene: applications in water technology. Springer, New York, pp 413–438.

    Google Scholar 

  11. M. M. Sajid, et al. (2019). Hydrothermal fabrication of monoclinic bismuth vanadate (m-BiVO4) nanoparticles for photocatalytic degradation of toxic organic dyes. Mater. Sci. Eng. B 242, 83–89.

    CAS  Google Scholar 

  12. X. Cheng, et al. (2004). ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens. Actuators B 102 (2), 248–252.

    CAS  Google Scholar 

  13. S. S. Joshi, et al. (2006). Role of ligands in the formation, phase stabilization, structural and magnetic properties of α-Fe2O3 nanoparticles. J. Nanopart. Res. 8 (5), 635–643.

    CAS  Google Scholar 

  14. Y. Huang, et al. (2006). Controlled synthesis and field emission properties of ZnO nanostructures with different morphologies. J. Nanosci. Nanotechnol. 6 (3), 787–790.

    CAS  PubMed  Google Scholar 

  15. S. Y. Lee, et al. (2005). Fabrication of ZnO thin film diode using laser annealing. Thin Solid Films 473 (1), 31–34.

    CAS  Google Scholar 

  16. Z. L. Wang, et al. (2004). Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 14 (10), 943–956.

    CAS  Google Scholar 

  17. Z. L. Wang (2004). Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16 (25), R829.

    CAS  Google Scholar 

  18. M. Suchea, et al. (2006). ZnO transparent thin films for gas sensor applications. Thin Solid Films 515 (2), 551–554.

    CAS  Google Scholar 

  19. W. Tress, et al. (2019). Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy. 4, 568–574.

    CAS  Google Scholar 

  20. H.-L. Guo, et al. (2015). Oxygen deficient ZnO1–x nanosheets with high visible light photocatalytic activity. Nanoscale 7 (16), 7216–7223.

    CAS  PubMed  Google Scholar 

  21. D. Lamas, G. Lascalea, and N. W. de Reca (1998). Synthesis and characterization of nanocrystalline powders for partially stabilized zirconia ceramics. J. Eur. Ceram. Soc. 18 (9), 1217–1221.

    CAS  Google Scholar 

  22. S. Bhaduri and S. Bhaduri (1997). Enhanced low temperature toughness of Al2O3-ZrO2 nano/nano composites. Nanostr. Mater. 8 (6), 755–763.

    CAS  Google Scholar 

  23. R.-C. Wang and C.-C. Tsai (2009). Efficient synthesis of ZnO nanoparticles, nanowalls, and nanowires by thermal decomposition of zinc acetate at a low temperature. Appl. Phys. A 94 (2), 241–245.

    CAS  Google Scholar 

  24. M. Ristić, et al. (2005). Sol–gel synthesis and characterization of nanocrystalline ZnO powders. J. Alloys Compd. 397 (1), L1–L4.

    Google Scholar 

  25. Y.-H. Ni, et al. (2005). Hydrothermal preparation and optical properties of ZnO nanorods. Mater. Sci. Eng. B 121 (1), 42–47.

    Google Scholar 

  26. N. Scarisoreanu, et al. (2005). Properties of ZnO thin films prepared by radio-frequency plasma beam assisted laser ablation. App. Sur. Sci. 247 (1), 518–525.

    CAS  Google Scholar 

  27. S.-S. Chang, et al. (2002). Luminescence properties of Zn nanowires prepared by electrochemical etching. Mater. Lett. 53 (6), 432–436.

    CAS  Google Scholar 

  28. A. K. Zak, et al. (2013). Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason. Sonochem. 20 (1), 395–400.

    Google Scholar 

  29. M. Kooti and A. Naghdi Sedeh (2012). Microwave-assisted combustion synthesis of ZnO nanoparticles. J. Chem. 2013, 1–4.

    Google Scholar 

  30. O. Singh, N. Kohli, and R. C. Singh (2013). Precursor controlled morphology of zinc oxide and its sensing behaviour. Sens. Actuators B 178, 149–154.

    CAS  Google Scholar 

  31. A. Shetty and K. K. Nanda (2012). Synthesis of zinc oxide porous structures by anodization with water as an electrolyte. Appl. Phys. A 109 (1), 151–157.

    CAS  Google Scholar 

  32. D. Rajesh, B. V. Lakshmi, and C. Sunandana (2012). Two-step synthesis and characterization of ZnO nanoparticles. Phys. B 407 (23), 4537–4539.

    CAS  Google Scholar 

  33. A. A. Mohamed, et al. (2020). Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02369-4.

    Article  PubMed  Google Scholar 

  34. A. A. Mohamed, et al. (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal. Agric. Biotechnol. 19, 101103.

    Google Scholar 

  35. A. Fouda, et al. (2020). Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 6 (9), e04896.

    PubMed  PubMed Central  Google Scholar 

  36. A. Fouda, et al. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb. Pathog. 125, 252–261.

    CAS  PubMed  Google Scholar 

  37. S. S. Salem and A. Fouda (2020). Green synthesis of metallic nanoparticles and their prosective biotechnological applications: an overview. Biol. Trace Elem. Res. 199 (1), 344–370.

    PubMed  Google Scholar 

  38. A. Vázquez, I. A. López, and I. Gómez (2013). Growth mechanism of one-dimensional zinc sulfide nanostructures through electrophoretic deposition. J. Mater. Sci. 48 (6), 2701–2704.

    Google Scholar 

  39. S. Kang, et al. (2013). Hydrothermal conversion of lignin: a review. Renew. Sust. Energy Rev. 27, 546–558.

    CAS  Google Scholar 

  40. D. Chen, X. Jiao, and G. Cheng (1999). Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun. 113 (6), 363–366.

    CAS  Google Scholar 

  41. N. A. Shad, et al. (2019). Photocatalytic investigation of cadmium oxide nanosheets prepared by hydrothermal method. Arab. J. Sci. Eng. 44, 6669–6675.

    CAS  Google Scholar 

  42. L. Gan, et al. (2018). The fabrication of bio-renewable and recyclable cellulose based carbon microspheres incorporated by CoFe2O4 and the photocatalytic properties. J. Clean. Prod. 196, 594–603.

    CAS  Google Scholar 

  43. A. Geng, et al. (2018). Highly efficient visible-light photocatalyst based on cellulose derived carbon nanofiber/BiOBr composites. Cellulose 25 (7), 4133–4144.

    CAS  Google Scholar 

  44. K. Leng, et al. (2018). Construction of functional nanonetwork-structured carbon nitride with Au nanoparticle yolks for highly efficient photocatalytic applications. Chem. Commun. 54 (52), 7159–7162.

    CAS  Google Scholar 

  45. M. Li, et al. (2019). Novel Z-scheme visible-light photocatalyst based on CoFe2O4/BiOBr/graphene composites for organic dye degradation and Cr(VI) reduction. App. Sur. Sci. 478, 744–753.

    CAS  Google Scholar 

  46. C.-T. Yang, et al. (2016). A novel heterojunction photocatalyst, Bi2SiO5/gC3N4: synthesis, characterization, photocatalytic activity, and mechanism. RSC Adv. 6 (47), 40664–40675.

    CAS  Google Scholar 

  47. M. M. Sajid, et al. (2019). Facile synthesis of Zinc vanadate Zn3 (VO4) 2 for highly efficient visible light assisted photocatalytic activity. J. Alloys Compd. 775, 281–289.

    CAS  Google Scholar 

  48. S. Agarwal, et al. (2019). Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens. Actuators B 292, 24–31.

    CAS  Google Scholar 

  49. M. Mahendiran, et al. (2019). Structural and optical analysis of 1D zinc oxide nanoparticles synthesized via hydrothermal method. Mater. Today: Proc. 8, 412–418.

    CAS  Google Scholar 

  50. R. Saravanan, et al. (2013). Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J. Mol. Liq. 178, 88–93.

    CAS  Google Scholar 

  51. T. Karnan and S. A. S. Selvakumar (2016). Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J. Mol. Struct. 1125, 358–365.

    CAS  Google Scholar 

  52. L. Chen, et al. (2012). Flower-like Bi2O2CO3: facile synthesis and their photocatalytic application in treatment of dye-containing wastewater. Chem. Eng. J. 193, 123–130.

    Google Scholar 

  53. J. Kaur, S. Bansal, and S. Singhal (2013). Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Phys. B 416, 33–38.

    CAS  Google Scholar 

  54. J. Iqbal, et al. (2015). Facile synthesis of Zn doped CuO hierarchical nanostructures: structural, optical and antibacterial properties. AIP Adv. 5 (12), 127112.

    Google Scholar 

  55. A. Arshad, et al. (2017). Graphene nanoplatelets induced tailoring in photocatalytic activity and antibacterial characteristics of MgO/graphene nanoplatelets nanocomposites. J. Appl. Phys. 121 (2), 024901.

    Google Scholar 

  56. R. M. Douglas, et al. (1987). Failure of effervescent zinc acetate lozenges to alter the course of upper respiratory tract infections in Australian adults. Antimicrob. Agents Chemother. 31 (8), 1263–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. C. W. Stratton, M. P. Weinstein, and L. B. Reller (1982). Correlation of serum bactericidal activity with antimicrobial agent level and minimal bactericidal concentration. J. Infect. Dis. 145 (2), 160–168.

    CAS  PubMed  Google Scholar 

  58. O. Lupan, et al. (2007). Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing. Mater. Sci. Eng. B 145 (1–3), 57–66.

    CAS  Google Scholar 

  59. S. M. Mali, et al. (2018). Ultrasensitive and bifunctional ZnO nanoplates for an oxidative electrochemical and chemical sensor of NO2: implications towards environmental monitoring of the nitrite reaction. RSC Adv. 8 (20), 11177–11185.

    CAS  Google Scholar 

  60. Y. Qiu, W. Chen, and S. Yang (2010). Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. J. Mater. Chem. A 20 (5), 1001–1006.

    CAS  Google Scholar 

  61. X. Wang, et al. (2010). Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem. A 20 (39), 8582–8590.

    CAS  Google Scholar 

  62. J. H. Zeng, B. B. Jin, and Y. F. Wang (2009). Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks. Chem. Phys. Lett. 472 (1–3), 90–95.

    CAS  Google Scholar 

  63. Z. Jing and J. Zhan (2008). Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20 (23), 4547–4551.

    CAS  Google Scholar 

  64. C.-L. Kuo, T.-J. Kuo, and M. H. Huang (2005). Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J. Phys. Chem. B 109 (43), 20115–20121.

    CAS  PubMed  Google Scholar 

  65. T. Tynell and M. Karppinen (2014). Atomic layer deposition of ZnO: a review. Semicond. Sci. Technol. 29 (4), 043001.

    CAS  Google Scholar 

  66. S. C. Lyu, et al. (2002). Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem. Phys. Lett. 363 (1–2), 134–138.

    CAS  Google Scholar 

  67. I. A. Abdelhafeez, et al. (2019). Green synthesis of ultrathin edge-activated foam-like carbon nitride nanosheets for enhanced photocatalytic performance under visible light irradiation. Sustain. Energy Fuels. 3, 1764–1775.

    CAS  Google Scholar 

  68. H. Parangusan, D. Ponnamma, and M. A. A. Al-Maadeed (2019). Effect of cerium doping on the optical and photocatalytic properties of ZnO nanoflowers. Bull. Mater. Sci. 42 (4), 179.

    Google Scholar 

  69. J. E. Morales-Mendoza, et al. (2019). Structure and optical properties of ZnO and ZnO2 nanoparticles. J. Nano Res. 56, 49–62.

    CAS  Google Scholar 

  70. R. Bomila, S. Suresh, and S. Srinivasan (2019). Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications. J. Mater. Sci. 30 (1), 582–592.

    CAS  Google Scholar 

  71. P. Secrétan, et al. (2019). Imatinib: major photocatalytic degradation pathways in aqueous media and the relative toxicity of its transformation products. Sci. Total Environ. 655, 547–556.

    PubMed  Google Scholar 

  72. R. Farzana, et al. (2017). Antimicrobial behavior of zinc oxide nanoparticles and β-lactam antibiotics against pathogenic bacteria. Arch. Clin. Microbiol. 8 (4), 57.

    Google Scholar 

  73. N. Jones, et al. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279 (1), 71–76.

    CAS  PubMed  Google Scholar 

  74. K. R. Raghupathi, R. T. Koodali, and A. C. Manna (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27 (7), 4020–4028.

    CAS  PubMed  Google Scholar 

  75. M. Li, L. Zhu, and D. Lin (2011). Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45 (5), 1977–1983.

    CAS  PubMed  Google Scholar 

  76. A. A. Nash, R. G. Dalziel, and J. R. Fitzgerald, Mims’ pathogenesis of infectious disease (Academic Press, Cambridge, 2015).

    Google Scholar 

Download references

Acknowledgements

Dr. Muhammad Munir Sajid is thankful to Dr. Zhengjun Zhang for supporting characterization techniques and keen interest, Tsinghua University; Beijing, China.

Funding

This work was financially supported by the State Scholarship Fund of China Scholarship Council (Grant No. 201808410144), the National Natural Science Foundation of China (Grant No. 51202107), and Foundation of Henan Educational Committee (Grant No. 20A480003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Munir Sajid or Haifa Zhai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M.M., Shad, N.A., Javed, Y. et al. Efficient Photocatalytic and Antimicrobial Behaviour of Zinc Oxide Nanoplates Prepared By Hydrothermal Method. J Clust Sci 33, 773–783 (2022). https://doi.org/10.1007/s10876-021-02013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02013-8

Keywords

Navigation