Skip to main content

Advertisement

Log in

Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new wide-ranging correlation for the thermal conductivity of xenon, based on the most recent theoretical calculations and critically evaluated experimental data, is presented. The correlation is designed to be used with a high-accuracy Helmholtz equation of state, and it is valid from the triple-point temperature to 606 K and pressures up to 400 MPa. The estimated expanded uncertainty (at a coverage factor of k = 2) in the range of validity of the correlation varies depending on the temperature and pressure, from 0.2 % to 4 %. In the near-critical region, the uncertainty is expected to be larger and may exceed 4 %. The correlation behaves in a physically reasonable manner when extrapolated up to 750 K; however, care should be taken when using the correlation outside of the validated range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.J. Assael, J.A.M. Assael, M.L. Huber, R.A. Perkins, Y. Takata, J. Phys. Chem. Ref. Data 40(3), 033101 (2011)

    Article  ADS  Google Scholar 

  2. M.J. Assael, I.A. Koini, K.D. Antoniadis, M.L. Huber, I.M. Abdulagatov, R.A. Perkins, J. Phys. Chem. Ref. Data 41(2), 023104 (2012)

    Article  ADS  Google Scholar 

  3. M.L. Huber, R.A. Perkins, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, K. Miyagawa, R. Hellmann, E. Vogel, J. Phys. Chem. Ref. Data 41(3), 033102 (2012)

    Article  ADS  Google Scholar 

  4. M.L. Huber, E.A. Sykioti, M.J. Assael, R.A. Perkins, J. Phys. Chem. Ref. Data 45(1), 013102 (2016)

    Article  ADS  Google Scholar 

  5. M.J. Assael, S.K. Mylona, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 41(2), 023101 (2012)

    Article  ADS  Google Scholar 

  6. M.J. Assael, E.K. Michailidou, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 41(4), 043102 (2012)

    Article  ADS  Google Scholar 

  7. C.-M. Vassiliou, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 44(3), 033102 (2015)

    Article  ADS  Google Scholar 

  8. M.J. Assael, I. Bogdanou, S.K. Mylona, M.L. Huber, R.A. Perkins, V. Vesovic, J. Phys. Chem. Ref. Data 42(2), 023101 (2013)

    Article  ADS  Google Scholar 

  9. S.A. Monogenidou, M.J. Assael, M.L. Huber, J. Phys. Chem. Ref. Data 47, 013103 (2018)

    Article  ADS  Google Scholar 

  10. A. Koutian, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 46, 013102 (2017)

    Article  ADS  Google Scholar 

  11. M.J. Assael, A. Koutian, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 45(3), 033104 (2016)

    Article  ADS  Google Scholar 

  12. S.K. Mylona, K.D. Antoniadis, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 43, 043104 (2014)

    Article  ADS  Google Scholar 

  13. M.J. Assael, T.B. Papalas, M.L. Huber, J. Phys. Chem. Ref. Data 46(3), 033103 (2017)

    Article  ADS  Google Scholar 

  14. E.A. Sykioti, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 42(4), 043101 (2013)

    Article  ADS  Google Scholar 

  15. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 61(9), 3286 (2016)

    Article  Google Scholar 

  16. C.M. Tsolakidou, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 46(2), 023103 (2017)

    Article  ADS  Google Scholar 

  17. S.A. Monogenidou, M.J. Assael, M.L. Huber, J. Phys. Chem. Ref. Data 47(4), 043101 (2018)

    Article  ADS  Google Scholar 

  18. H.J.M. Hanley, R.D. McCarty, W.M. Haynes, J. Phys. Chem. Ref. Data 3(4), 979 (1974)

    Article  ADS  Google Scholar 

  19. M.L. Huber, Models for viscosity, thermal conductivity, and surface tension of selected fluids as implemented in REFPROP v10.0, NISTIR 8209, doi:https://doi.org/10.6028/NIST.IR.8209. (National Institute of Standards and Technology, Gaithersburg, MD, 2018)

  20. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10.0. (2018)

  21. M.J. Assael, A.E. Kalyva, S.A. Monogenidou, M.L. Huber, R.A. Perkins, D.G. Friend, E.F. May, J. Phys. Chem. Ref. Data 47(2), 021501 (2018)

    Article  ADS  Google Scholar 

  22. R. Svehla, Estimated viscosities and thermal conductivities of gases at high temperatures, NASA Technical Report R-132, Cleveland OH. (1962)

  23. H.J.M. Hanley, G.E. Childs, The Viscosity and Thermal Conductivity Coefficients of Dilute Neon, Krypton, and Xenon, NBS Technical Note 352 (Government Printing Office, Washington DC, U.S, 1967).

    Google Scholar 

  24. V.A. Rabinovich, A.A. Vasserman, V.I. Nedostup, L.S. Veksler, Thermophysical Properties of Neon, Argon, Krypton, and Xenon (National Standard Reference Data Service of the USSR, Moscow, 1976).

    Google Scholar 

  25. N.B. Vargaftik, Y.D. Vasilevskaya, J. Eng. Phys. 39, 1217 (1980)

    Article  Google Scholar 

  26. B. Najafi, E.A. Mason, J. Kestin, Phys. A 119(3), 387 (1983)

    Article  Google Scholar 

  27. J. Kestin, K. Knierim, E.A. Mason, B. Najafi, S.T. Ro, M. Waldman, J. Phys. Chem. Ref. Data 13(1), 229 (1984)

    Article  ADS  Google Scholar 

  28. E. Bich, J. Millat, E. Vogel, J. Phys. Chem. Ref. Data 19(6), 1289 (1990)

    Article  ADS  Google Scholar 

  29. R. Hellmann, B. Jäger, E. Bich, J. Chem. Phys. 147, 034304 (2017)

    Article  ADS  Google Scholar 

  30. X. Xiao, D. Rowland, S.Z.S. Al Ghafri, E.F. May, J. Phys. Chem. Ref. Data 49 (1), 013101 (2020)

  31. W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012)

    Article  ADS  Google Scholar 

  32. R.F. Berg, M.R. Moldover, J. Phys. Chem. Ref. Data 41(4), 043104 (2012)

    Article  ADS  Google Scholar 

  33. E.F. May, R.F. Berg, M.R. Moldover, Int. J. Thermophys. 28(4), 1085 (2007)

    Article  ADS  Google Scholar 

  34. M.J. Assael, M. Dix, A. Lucas, W.A. Wakeham, J. Chem. Soc., Faraday Trans. I 77, 439 (1981)

  35. J. Kestin, R. Paul, A.A. Clifford, W.A. Wakeham, Phys. A 100(2), 349 (1980)

    Article  Google Scholar 

  36. D. Vidal, R. Tufeu, Y. Garrabos, B. Le Neindre, "High Pressure Science and Technology", Eds. B. Vodar, and Ph. Marteau, Proc. of VIIth AIPART Vonference, Le Creusot, France July 30- August 3. (Pergamon Press, New York, 1979)

  37. R. Tufeu, B. Le Neindre, P. Bury, C. R. Acad. Sc. Paris 273 B, 113 (1971)

  38. L. Ikenberry, S.A. Rice, J. Chem. Phys. 39(6), 1561 (1963)

    Article  ADS  Google Scholar 

  39. B.J. Jody, S.C. Saxena, V.P.S. Nain, R.A. Aziz, High Temp. Sci. 8, 343 (1976)

    Google Scholar 

  40. A.G. Shashkov, N.A. Nesterov, V.M. Sudnik, V.I. Aleinikova, Inzh.-Fiz. Zh. 30, 671 (1976)

    Google Scholar 

  41. S.S. Bakulin, S.A. Ulybin, E.N. Zherdev, Teplofiz. Vys. Temp. 13, 760 (1975)

    Google Scholar 

  42. B. Stefanov, J. Chem. Phys. 63(5), 2258 (1975)

    Article  ADS  Google Scholar 

  43. A.A. Voshchinin, V.V. Kerzhentsev, E.L. Studnikov, L.V. Yakush, Izv. Vyssh. Uchebn. Zaved. Energ. 7, 88 (1975)

    Google Scholar 

  44. G.S. Springer, E.W. Wingeier, J. Chem. Phys. 59(5), 2747 (1973)

    Article  ADS  Google Scholar 

  45. S.C. Saxena, P.K. Tondon, J. Chem. Eng. Data 16(2), 212 (1971)

    Article  Google Scholar 

  46. N.B. Vargaftik, L.V. Yakush, Inzh.-Fiz. Zh 21, 491 (1971)

  47. V.K. Saxena, S.C. Saxena, J. Chem. Phys. 51(8), 3361 (1969)

    Article  ADS  Google Scholar 

  48. R.A. Matula, J. Heat Transfer 90(3), 319 (1968)

    Article  Google Scholar 

  49. R.S. Gambhir, J.M. Gandhi, S.C. Saxena, Indian J. Pure Appl. Phys. 5, 457 (1967)

    Google Scholar 

  50. J.M. Gandhi, S.C. Saxena, Mol. Phys. 12, 57 (1967)

    Article  ADS  Google Scholar 

  51. B.N. Srivastava, A.K. Barua, J. Chem. Phys. 32(2), 427 (1960)

    Article  ADS  Google Scholar 

  52. L.S. Zaitseva, Zh. Tekh, Fiz. 29, 497 (1959)

    Google Scholar 

  53. W.G. Kannuluik, E.H. Carman, Proc. Phys. Soc. B 65, 701 (1952)

    Article  ADS  Google Scholar 

  54. E. Thornton, Proc. Phys. Soc. 76, 104 (1960)

    Article  ADS  Google Scholar 

  55. F.G. Keyes, Trans. ASME 77, 1395 (1955)

    Google Scholar 

  56. H. Curie, A. Lepape, J. Phys. Rad. 2, 392 (1931)

    Article  Google Scholar 

  57. R. Tufeu, D. Vidal, M. Lallemand, B. Le Neindre, High Temp. High Press. 11, 587 (1979)

    Google Scholar 

  58. B. Le Neindre, Y. Garrabos, R. Tufeu, Phys. A 156(1), 512 (1989)

    Article  Google Scholar 

  59. E.W. Lemmon, R.J. Span, J. Chem. Eng. Data 51(3), 785 (2006)

    Article  Google Scholar 

  60. K.D. Hill, A.G. Steele, Metrologia 42(4), 278 (2005)

    Article  ADS  Google Scholar 

  61. P.P.M. Steur, P.M.C. Rourke, D. Giraudi, Metrologia 56(1), 015008 (2019)

    Article  ADS  Google Scholar 

  62. G.A. Olchowy, J.V. Sengers, Phys. Rev. Lett. 61(1), 15 (1988)

    Article  ADS  Google Scholar 

  63. R. Mostert, H.R. van Den Berg, P.S. van der Gulik, J.V. Sengers, J. Chem. Phys. 92(9), 5454 (1990)

    Article  ADS  Google Scholar 

  64. P.T. Boggs, R.H. Byrd, J.H. Rogers, R.B. Schnabel, User's referene guide for ODRPACK version 2.01, Software for weighted orthogonal distance regression, NISTIR 4834 (National Institute of Standards and Technology, Gaithersburg, MD, 1992)

  65. G.A. Olchowy, J.V. Sengers, Int. J. Thermophys. 10(2), 417 (1989)

    Article  ADS  Google Scholar 

  66. R.A. Perkins, J.V. Sengers, I.M. Abdulagatov, M.L. Huber, Int. J. Thermophys. 34, 191 (2013)

    Article  ADS  Google Scholar 

  67. D. Velliadou, K. Tasidou, K.D. Antoniadis, M.J. Assael, R.A. Perkins, M.L. Huber, Int. J. Thermophys. submitted (2021)

  68. V. Vesovic, W.A. Wakeham, G.A. Olchowy, J.V. Sengers, J.T.R. Watson, J. Millat, J. Phys. Chem. Ref. Data 19(3), 763 (1990)

    Article  ADS  Google Scholar 

  69. A. Michels, C. Prins, Physica 28(2), 101 (1962)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Assael.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velliadou, D., Assael, M.J., Antoniadis, K.D. et al. Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa. Int J Thermophys 42, 51 (2021). https://doi.org/10.1007/s10765-021-02803-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02803-2

Keywords

Navigation