Skip to main content
Log in

Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

To realize the utilization of visible light and improve the photocatalytic efficiency of organic pollutant degradation in wastewater, a nitrogen-doped titanium-carbon composite (N-TiO2/AC) prepared by sol-gel methods was applied in the photodegradation of phenol assisted by persulfate under visible light irradiation (named N-TiO2/AC/PS/VIS). The results show that a synergistic effect exists between visible-light photocatalysis and persulfate activation. Compared with TiO2/PS/VIS, the phenol degradation rate was found to be observably improved by 65% in the N-TiO2/AC/PS/VIS system. This significant increase in degradation rate was mainly attributed to the following two factors: 1) The N and C doping can change the crystal structure of TiO2, which extends the TiO2 absorption wavelength range to the visible light region. 2) As an electron acceptor, PS can not only prevent electrons and holes from recombining with each other but can also generate strong oxidizing radicals such as ·SO4 and ·OH to accelerate the reaction dynamics. The process of phenol degradation was found to be consistent with the Langmuir pseudo-first-order kinetic model with an apparent rate constant k of 1.73 min−1. The N-TiO2/AC/PS/VIS process was proven to be a facile method for pollutant degradation with high pH adaptability, excellent visible-light utilization and good application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu J W, Lan L, Liu X T T, Wang N, Fan X L. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light. Frontiers of Chemical Science and Engineering, 2019, 13(4): 665–671

    Article  CAS  Google Scholar 

  2. Zhang T H, Liu Y J, Rao Y D, Li X P, Yuan D L, Tang S F, Zhao Q X. Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light. Chemical Engineering Journal, 2020, 384: 123350

    Article  CAS  Google Scholar 

  3. Yang L, Xu L, Bai X, Jin P. Enhanced visible-light activation of persulfate by Ti3+ self-doped TiO2/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water. Journal of Hazardous Materials, 2019, 365: 107–117

    Article  CAS  Google Scholar 

  4. Grilla E, Matthaiou V, Frontistis Z, Oller I, Polo I, Malato S, Mantzavinos D. Degradation of antibiotic trimethoprim by the combined action of sunlight, TiO2 and persulfate: a pilot plant study. Catalysis Today, 2019, 328: 216–222

    Article  CAS  Google Scholar 

  5. He L, Dong Y N, Zheng Y N, Jia Q M, Shan S Y, Zhang Y Q. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. Journal of Hazardous Materials, 2019, 361: 85–94

    Article  CAS  Google Scholar 

  6. Hou L Q, Yang W, Xu X W, Deng B J, Chen Z, Wang S, Tian J B, Yang F, Li Y F. In-situ activation endows the integrated Fe3C/Fe@ nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chemical Engineering Journal, 2019, 375: 10

    Google Scholar 

  7. Kakavandi B, Bahari N, Kalantary R R, Fard E D. Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: a new hybrid system. Ultrasonics Sonochemistry, 2019, 55: 75–85

    Article  CAS  Google Scholar 

  8. Liu D D, Wu Z S, Tian F, Ye B C, Tong Y B. Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. Journal of Alloys and Compounds, 2016, 676: 489–498

    Article  CAS  Google Scholar 

  9. Yang X L, Qian F F, Wang Y, Li M L, Lu J R, Li Y M, Bao M T. Constructing a novel ternary composite (C16H33(CH3)3N)4W10O32/g-C3N4/rGO with enhanced visible-light-driven photocatalytic activity for degradation of dyes and phenol. Applied Catalysis B: Environmental, 2017, 200: 283–296

    Article  CAS  Google Scholar 

  10. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271

    Article  CAS  Google Scholar 

  11. Hoang S, Berglund S P, Hahn N T, Bard A J, Mullins C B. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. Journal of the American Chemical Society, 2012, 134(8): 3659–3662

    Article  CAS  Google Scholar 

  12. Martins A C, Cazetta A L, Pezoti O, Souza J R B, Zhang T, Pilau E J, Asefa T, Almeida V C. Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceramics International, 2017, 43(5): 4411–4418

    Article  CAS  Google Scholar 

  13. Rimoldi L, Pargoletti E, Meroni D, Falletta E, Cerrato G, Turco F, Cappelletti G. Concurrent role of metal (Sn, Zn) and N species in enhancing the photocatalytic activity of TiO2 under solar light. Catalysis Today, 2018, 313: 40–46

    Article  CAS  Google Scholar 

  14. Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters, 2006, 6(1): 24–28

    Article  CAS  Google Scholar 

  15. Wang H, Lewis J P. Effects of dopant states on photoactivity in carbon-doped TiO2. Journal of Physics Condensed Matter, 2005, 17 (21): 209–213

    Article  Google Scholar 

  16. Wang C, Jia S Y, Zhang Y C, Nian Y, Wang Y, Han Y, Liu Y, Ren H T, Wu S H, Yao K X, Han X. Catalytic reactivity of Co3O4 with different facets in the hydrogen abstraction of phenol by persulfate. Applied Catalysis B: Environmental, 2020, 270: 12

    Google Scholar 

  17. Sanches S, Crespo M T B, Pereira V J. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research, 2010, 44(6): 1809–1818

    Article  CAS  Google Scholar 

  18. Chiou C H, Wu C Y, Juang R S. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical Engineering Journal, 2008, 139(2): 322–329

    Article  CAS  Google Scholar 

  19. Dominguez J R, Beltran J, Rodriguez O. Vis and UV photocatalytic detoxification methods (using TiO2,TiO2/H2O2,TiO2/O3,TiO2/S2O82−,O3,H2O2,S2O82−,Fe3+/H2O2 and Fe3+/H2O2/C2O42−) for dyes treatment. Catalysis Today, 2005, 101(3–4): 389–395

    Article  CAS  Google Scholar 

  20. Garcia J C, Oliveira U, Silva A E C, Oliveira C C, Nozaki J, de Souza N E. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. Journal of Hazardous Materials, 2007, 147 (1–2): 105–110

    Article  CAS  Google Scholar 

  21. Harir M, Gaspar A, Kanawati B, Fekete A, Frommberger M, Martens D, Kettrup A, El Azzouzi M, Schmitt-Kopplin P. Photocatalytic reactions of imazamox at TiO2,H2O2 and TiO2/H2O2 in water interfaces: kinetic and photoproducts study. Applied Catalysis B: Environmental, 2008, 84(3–4): 524–532

    Article  CAS  Google Scholar 

  22. Hazime R, Nguyen Q H, Ferronato C, Salvador A, Jaber F, Chovelon J M. Comparative study of imazalil degradation in three systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8. Applied Catalysis B: Environmental, 2014, 144: 286–291

    Article  CAS  Google Scholar 

  23. Momenia M M, Hosseini M G. Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation. Nanochemistry Research, 2016, 1(1): 9–18

    Google Scholar 

  24. Liu G S, You S J, Tan Y, Ren N Q. In situ photochemical activation of sulfate for enhanced degradation of organic pollutants in water. Environmental Science & Technology, 2017, 51(4): 2339–2346

    Article  CAS  Google Scholar 

  25. Ahmed B, Anjum D H, Hedhili M N, Gogotsi Y, Alshareef H N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 2016, 8(14): 7580–7587

    Article  CAS  Google Scholar 

  26. Lewin E, Persson P O A, Lattemann M, Stuber M, Gorgoi M, Sandell A, Ziebert C, Schadfers F, Braun W, Halbritter J, et al. On the origin of a third spectral component of C1s XPS-spectra for nc-TiC/a-C nanocomposite thin films. Surface and Coatings Technology, 2008, 202(15): 3563–3570

    Article  CAS  Google Scholar 

  27. Kodtharin N, Vongwatthaporn R, Nutariya J, Sricheewin C, Timah E N, Sivaleitporn K, Thumthana O, Tipparach U. Structures and properties of N-doped TiO2 nanotubes arrays synthesized by the anodization method for hydrogen production. Materials Today: Proceedings, 2018, 5(6): 14091–14098

    CAS  Google Scholar 

  28. Soto G. AES, EELS and XPS characterization of Ti(C, N, O) films prepared by PLD using a Ti target in N2,CH4,O2 and CO as reactive gases. Applied Surface Science, 2004, 233(1/4): 115–122

    Article  CAS  Google Scholar 

  29. Huang H S, Song Y, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Applied Catalysis B: Environmental, 2019, 251: 154–161

    Article  CAS  Google Scholar 

  30. Li H, Hao Y, Lu H, Liang L, Wang Y, Qiu J, Shi X, Wang Y, Yao J. A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol-gel method. Applied Surface Science, 2015, 344: 112–118

    Article  CAS  Google Scholar 

  31. Liu X F, Xing Z P, Zhang Y, Li Z Z, Wu X Y, Tan S Y, Yu X J, Zhu Q, Zhou W. Fabrication of 3D flower-like black N-TiO2x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2017, 201: 119–127

    Article  CAS  Google Scholar 

  32. Chen X Y, Wang W P, Xiao H, Hong C L, Zhu F X, Yao Y L, Xue Z Y. Accelerated TiO2 photocatalytic degradation of acid orange 7 under visible light mediated by peroxymonosulfate. Chemical Engineering Journal, 2012, 193: 290 295

    Article  Google Scholar 

  33. Guo Y, Zeng Z, Liu Y, Huang Z, Cui Y, Yang J. One-pot synthesis of sulfur doped activated carbon as a superior metal-free catalyst for the adsorption and catalytic oxidation of aqueous organics. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(9): 4055–4067

    Article  CAS  Google Scholar 

  34. Guo Y, Zeng Z, Zhu Y, Huang Z, Cui Y, Yang J. Catalytic oxidation of aqueous organic contaminants by persulfate activated with sulfur-doped hierarchically porous carbon derived from thiophene. Applied Catalysis B: Environmental, 2018, 220: 635–644

    Article  CAS  Google Scholar 

  35. Gao Y W, Li S M, Li Y X, Yao L Y, Zhang H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202: 165–174

    Article  CAS  Google Scholar 

  36. Duan X G, Sun H Q, Wang Y X, Kang J, Wang S B. N-Doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catalysis, 2015, 5(2): 553–559

    Article  CAS  Google Scholar 

  37. Li X, Liao F, Ye L, Yeh L. Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism. Journal of Hazardous Materials, 2020, 398: 122938

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Youth Scientific and Technological Foundation of Shanxi Province (Grant No. 201701D221232) and the Youth Scientific and Technological Foundation of Shanxi Province (Grant No. 201901D211580).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zequan Zeng or Zhanggen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Zeng, Z., Zheng, J. et al. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite. Front. Chem. Sci. Eng. 15, 1125–1133 (2021). https://doi.org/10.1007/s11705-020-2012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2012-z

Keywords

Navigation