Skip to main content
Log in

Simultaneous harvesting and cell disruption of microalgae using ozone bubbles: optimization and characterization study for biodiesel production

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, ozone was introduced as an alternative approach to harvest and disrupt microalgae cells (Chlorella vulgaris) simultaneously for biodiesel production. At the optimum ozonation conditions (6.14 g·h−1 ozone concentration, 30 min ozonation time, 1 L·min−1 of ozone flowrate at medium pH of 10 and temperature of 30 °C), the sedimentation efficiency of microalgae cells increased significantly from 12.56% to 68.62%. It was observed that the microalgae cells aggregated to form flocs after pretreated with ozone due to the increment of surface charge from −20 to −6.59 mV. Besides, ozone had successfully disrupted the microalgae cells and resulted in efficient lipid extraction, which was 1.9 times higher than the control sample. The extracted microalgae lipid was mainly consisted of methyl palmitate (C16:0), methyl oleate (C18:1) and methyl linolenate (C18:3), making it suitable for biodiesel production. Finally, utilization of recycled culture media after ozonation pre-treatment showed robust growth of microalgae, in which the biomass yield was maintained in the range of 0.796 to 0.879 g ·h−1 for 5 cycles of cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gouveia L, Oliveira A C. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology, 2009, 36(2): 269–274

    Article  CAS  Google Scholar 

  2. Wigmosta M S, Coleman A M, Skaggs R J, Huesemann M H, Lane L J. National microalgae biofuel production potential and resource demand. Water Resources Research, 2011, 47(30): W00H04

    Google Scholar 

  3. Zittelli G C, Rodolfi L, Biondi N, Tredici M R. Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 2006, 261(3): 932–943

    Article  Google Scholar 

  4. Danquah M K, Ang L, Uduman N, Moheimani N, Forde G M. Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. Journal of Chemical Technology and Biotechnology, 2009, 84(7): 1078–1083

    Article  CAS  Google Scholar 

  5. Grima E M, Belarbi E H, Fernandez F A, Medina A R, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 2003, 20(7–8): 491–515

    Article  Google Scholar 

  6. Salim S, Bosma R, Vermuë M H, Wijffels R H. Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 2011, 23(5): 849–855

    Article  PubMed  Google Scholar 

  7. Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 2013, 31(4): 233–239

    Article  CAS  PubMed  Google Scholar 

  8. Günerken E, d’Hondt E, Eppink M, Garcia Gonzalez L, Elst K, Wijffels R. Cell disruption for microalgae biorefineries. Biotechnology Advances, 2015, 33(2): 243–260

    Article  PubMed  CAS  Google Scholar 

  9. Show K Y, Lee D J, Tay J H, Lee T M, Chang J S. Microalgal drying and cell disruption—recent advances. Bioresource Technology, 2015, 184: 258–266

    Article  CAS  PubMed  Google Scholar 

  10. Wang M, Yuan W, Jiang X, Jing Y, Wang Z. Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technology, 2014, 153: 315–321

    Article  CAS  PubMed  Google Scholar 

  11. Vilkhu K, Mawson R, Simons L, Bates D. Applications and opportunities for ultrasound assisted extraction in the food industry: a review. Innovative Food Science & Emerging Technologies, 2008, 9(2): 161–169

    Article  CAS  Google Scholar 

  12. Xu P, Janex M L, Savoye P, Cockx A, Lazarova V. Wastewater disinfection by ozone: main parameters for process design. Water Research, 2002, 36(4): 1043–1055

    Article  CAS  PubMed  Google Scholar 

  13. Margot J, Kienle C, Magnet A, Weil M, Rossi L, De Alencastro L F, Abegglen C, Thonney D, Chèvre N, Schärer M, Barry D A. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Science of the Total Environment, 2013, 461–462: 480–498

    Article  CAS  PubMed  Google Scholar 

  14. Kadir W N A, Lam M K, Uemura Y, Lim J W, Lee K T. Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review. Energy Conversion and Management, 2018, 171: 1416–1429

    Article  CAS  Google Scholar 

  15. Oliveira G A, Carissimi E, Monje Ramírez I, Velasquez Orta S B, Rodrigues R T, Ledesma M T O. Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a high-rate algal pond. Bioresource Technology, 2018, 259: 334–342

    Article  CAS  PubMed  Google Scholar 

  16. Lam M K, Lee K T. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy, 2012, 94: 303–308

    Article  CAS  Google Scholar 

  17. Kadir W N A, Lam M K, Uemura Y, Lim J W, Lee K T. Harvesting and pre-treatment of microalgae biomass via ozonation for lipid extraction: a preliminary study. In: Proceedings of the 3rd International Conference on Applied Science and Technology (ICAST’18). Maryland: AIP Publishing LLC, 2018, 020064

    Google Scholar 

  18. Tan X B, Lam M K, Uemura Y, Lim J W, Wong C Y, Ramli A, Kiew P L, Lee K T. Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: growth optimization study and fatty acid composition analysis. Energy Conversion and Management, 2018, 164: 363–373

    Article  CAS  Google Scholar 

  19. Bader H, Hoigné J. Determination of ozone in water by the indigo method. Water Research, 1981, 15(4): 449–156

    Article  CAS  Google Scholar 

  20. Kamaroddin M F, Hanotu J, Gilmour D J, Zimmerman W B. In-situ disinfection and a new downstream processing scheme from algal harvesting to lipid extraction using ozone-rich microbubbles for biofuel production. Algal Research, 2016, 17: 217–226

    Article  Google Scholar 

  21. Dasan Y K, Lam M K, Yusup S, Lim J W, Show P L, Tan I S, Lee K T. Cultivation of Chlorella vulgaris using sequential-flow bubble column photobioreactor: a stress-inducing strategy for lipid accumulation and carbon dioxide fixation. Journal of CO2 Utilization, 2020, 41: 101226

    Article  CAS  Google Scholar 

  22. Rosli S S, Lim J W, Jumbri K, Lam M K, Uemura Y, Ho C D, Tan W N, Cheng C K, Kadir W N A. Modeling to enhance attached microalgal biomass growth onto fluidized beds packed in nutrients-rich wastewater whilst simultaneously biofixing CO2 into lipid for biodiesel production. Energy Conversion and Management, 2019, 185: 1–10

    Article  CAS  Google Scholar 

  23. Sudhakar K, Premalatha M. Characterization of micro algal biomass through FTIR/TGA/CHN analysis: application to Scenedesmus sp. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2015, 37(21): 2330–2337

    Article  CAS  Google Scholar 

  24. Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances, 2016, 34(7): 1225–1244

    Article  CAS  PubMed  Google Scholar 

  25. Jekel M R. Flocculation effects of ozone. Ozone Science and Engineering, 1994, 16(1): 55–66

    Article  CAS  Google Scholar 

  26. Cheng Y L, Juang Y C, Liao G Y, Ho S H, Yeh K L, Chen C Y, Chang J S, Liu J C, Lee D J. Dispersed ozone flotation of Chlorella vulgaris. Bioresource Technology, 2010, 101(23): 9092–9096

    Article  CAS  PubMed  Google Scholar 

  27. Cardeña R, Moreno G, Bakonyi P, Buitrón G. Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chemical Engineering Journal, 2017, 307: 948–954

    Article  CAS  Google Scholar 

  28. Gordetsov A S, Peretyagin S P, Kadomtseva A V, Novikova A N, Grechkaneva O V, Zimina S V. Reactive oxygen species of ozonolysis products of some unsaturated organic compounds. Sovremennye Tehnologii v. Medicine, 2019, 11(3): 60–64

    Article  Google Scholar 

  29. Tsang Y H, Koh Y H, Koch D L. Bubble-size dependence of the critical electrolyte concentration for inhibition of coalescence. Journal of Colloid and Interface Science, 2004, 275(1): 290–297

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira G A, Monje Ramirez I, Carissimi E, Rodrigues R T, Velasquez Orta S B, Mejía A C C, Ledesma M T O. The effect of bubble size distribution on the release of microalgae proteins by ozone-flotation. Separation and Purification Technology, 2019, 211: 340–347

    Article  CAS  Google Scholar 

  31. Branyikova I, Prochazkova G, Potocar T, Jezkova Z, Branyik T. Harvesting of microalgae by flocculation. Fermentation, 2018, 4(4): 93

    Article  CAS  Google Scholar 

  32. Smith B T, Davis R H. Sedimentation of algae flocculated using naturally-available, magnesium-based flocculants. Algal Research, 2012, 1(1): 32–39

    Article  CAS  Google Scholar 

  33. Maji G, Choudhury S, Hamid S, Prashanth R, Sibi G. Microalgae harvesting via flocculation: impact of pH, algae species and biomass concentration. Methods of Microbiology and Molecular Biology, 2018, 1(2): 106

    Google Scholar 

  34. Pan Y, Shi B, Zhang Y. Research on flocculation property of bioflocculant PG. a21 Ca. Modern Applied Science, 2009, 3(6): 106–112

    Article  CAS  Google Scholar 

  35. Hammes F, Meylan S, Salhi E, Köster O, Egli T, Von Gunten U. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Water Research, 2007, 41(7): 1447–1454

    Article  CAS  PubMed  Google Scholar 

  36. Lai Y H, Md Azmi F H, Fatehah N A, Puspanadan S, Lee C K. Efficiency of chitosan and eggshell on harvesting of Spirulina sp. in a bioflocculation process. Malaysian Journal of Microbiology, 2019, 15(3): 188–194

    CAS  Google Scholar 

  37. Vandamme D. Flocculation based harvesting processes for micro-algae biomass production. Dissertation for the Doctoral Degree. Leuven: Katholieke Universiteit Leuven, 2013, 21–24

    Google Scholar 

  38. Low Y, Lau S W. Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement. In: 29th Symposium of Malaysian Chemical Engineers, SOMChE 2016. Bristol: Institute of Physics Publishing, 2017, 012073

    Google Scholar 

  39. Khoo C G, Woo M H, Yury N, Lam M K, Lee K T. Dual role of Chlorella vulgaris in wastewater treatment for biodiesel production: growth optimization and nutrients removal study. Journal of the Japan Institute of Energy, 2017, 96(8): 290–299

    Article  CAS  Google Scholar 

  40. Huang Y, Hong A, Zhang D, Li L. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris. Environmental Technology, 2014, 35(8): 931–937

    Article  CAS  PubMed  Google Scholar 

  41. Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 2010, 14(1): 217–232

    Article  CAS  Google Scholar 

  42. Alexandre A P S, Castanha N, Costa N S, Santos A S, Badiale Furlong E, Augusto P E D, Calori Domingues M A. Ozone technology to reduce zearalenone contamination in whole maize flour: degradation kinetics and impact on quality. Journal of the Science of Food and Agriculture, 2019, 99(15): 6814–6821

    Article  CAS  PubMed  Google Scholar 

  43. Amri Z, Ben H S, Dbeibia A, Ghorbel A, Mahdhi A, Znati M, Ambat I, Haapaniemi E, Sillanpää M, Hammami M. Physicochemical characterization and antibacterial activity of ozonated pomegranate seeds oil. Ozone Science and Engineering, 2020, 42 (6): 1–8

    Article  CAS  Google Scholar 

  44. Lee J Y, Yoo C, Jun S Y, Ahn C Y, Oh H M. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 2010, 101(1): 75–77

    Article  CAS  Google Scholar 

  45. Ahmad A, Yasin N M, Derek C, Lim J. Kinetic studies and thermodynamics of oil extraction and transesterification of Chlorella sp. for biodiesel production. Environmental Technology, 2014, 35 (7): 891–897

    Article  CAS  PubMed  Google Scholar 

  46. Farooq W, Suh W I, Park M S, Yang J W. Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 2015, 184: 73–81

    Article  CAS  PubMed  Google Scholar 

  47. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technology, 2011, 102(1): 159–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the Ministry of Higher Education (MOHE) Malaysia through Fundamental Research Grant Scheme (FRGS) with cost center Grant No. 0153AB-L25 and Fundamental Research Grant Scheme Malaysia’s Rising Star Awards 2016 (FRGS MRSA 2016) with cost center Grant No. 203/PJKIMIA/6071362. Support from MOHE through HICoE award to CBBR is duly acknowledged (cost centre Grant No. 015MA0-052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man K. Lam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadir, W.N.A., Lam, M.K., Uemura, Y. et al. Simultaneous harvesting and cell disruption of microalgae using ozone bubbles: optimization and characterization study for biodiesel production. Front. Chem. Sci. Eng. 15, 1257–1268 (2021). https://doi.org/10.1007/s11705-020-2015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2015-9

Keywords

Navigation