Skip to main content
Log in

Numerical and Experimental Study to Determine the Permeability Anisotropy in Porous Rocks from Probe Permeameter Measurements

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Probe permeameter has been widely used to obtain measurements and spatial distributions of permeability in both the laboratory and field outcrop applications. It provides cheap, fast, intensive, and nondestructive permeability measurements. In the literature, the difference between steady-state and unsteady-state measurements and the effects of heterogeneity and anisotropy on probe permeameter measurements have been investigated both numerically and experimentally. However, the available work provides a method for the determination of the permeability in two principal directions only. This study fills such a gap by providing a novel solution for the steady-state single-phase flow problem for the determination of permeability anisotropy in the three principal directions using probe permeameter measurements. The solution was obtained by solving the diffusivity equation describing the steady-state flow of a single-phase fluid in a three-dimensional (3D) rectangular system. Different permeability anisotropy ratios were tested for different anisotropy cases starting from a fully isotropic sample to a fully anisotropic sample. The obtained results are presented graphically in a dimensionless space. The dimensionless parameters include the dimensionless pressure and anisotropy ratios in different flow directions. A practical procedure based on the solution is then described to evaluate the permeability in a 3D rectangular rock sample. This method requires a few measurements of steady-state flow rate and pressure drop conducted using the probe permeameter at different directions on a rectangular rock sample. The applicability of the proposed solution and developed technique is demonstrated by conducting probe permeameter measurements on three different directions of one cubical cement sample and two outcrop carbonate samples. The results obtained from the proposed method show good match (an average root-mean-square error of 0.653 mD) when compared to the reference permeability values measured on directional plugs by conventional nitrogen permeameter. The procedure described in this work can be used to have a quick and robust evaluation of permeability anisotropy from rock samples in either outcrop or laboratory studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A_{s}\) :

Cross-sectional area in s-direction, ft2

\(B\) :

Formation volume factor, bbl/STB

b :

Klinkenberg slip factor, psi

C i :

Arbitrary constants

cc:

Cubic centimeter (cm3)

\(k_{{\text{g}}}\) :

Gas permeability, mD

\(k_{{\text{L}}}\) :

Liquid permeability, mD

\(k_{s}\) :

Permeability in s-direction, mD

\(L\) :

Length of the sample, ft

\({\text{min}}\) :

Minute

\(P\) :

Pressure, psi

\(P_{{{\text{atm}}}}\) :

Atmospheric pressure = 14.7 psi

\(P_{{{\text{D}}_{s} }}\) :

Dimensionless pressure in s-direction

\(P_{{\text{m}}}\) :

Mean pressure, psi

\(P_{{\text{p}}}\) :

Probe pressure, psi

\(p\) :

Pressure drop across the sample, psi

\(q\) :

Fluid flow rate, cc/min

\(q_{{\text{m}}}\) :

Fluid flow rate at \(P_{{\text{m}}}\), cc/min

\(r_{{\text{p}}}\) :

Probe size, cm

\(R_{{{\text{D}}_{Pij} }}\) :

Ratio of dimensionless pressure in i-direction to that in j-direction

\(R_{ij}\) :

Permeability ratio between i-direction and j-direction (anisotropy ratio)

RMSE:

Root-mean-square error

\(s\) :

Subscript to denote the direction

\(x\) :

x-Direction

\(y\) :

y-Direction

\(z\) :

z-Direction

\(\beta_{{\text{c}}}\) :

Conversion factor to field units = \(1.127 \times 10^{ - 3}\)

\(\mu\) :

Fluid viscosity, cP

References

  1. Davis, J.M.; Wilson, J.L.; Phillips, F.M.: A portable air-minipermeameter for rapid in situ field measurements. Groundwater 32(2), 258–266 (1994). https://doi.org/10.1111/j.1745-6584.1994.tb00640.x

    Article  Google Scholar 

  2. Sharp, J.M., Jr.; Fu, L.; Cortez, P.; Wheeler, E.: An electronic minipermeameter for use in the field and laboratory. Groundwater 32(1), 41–46 (1994). https://doi.org/10.1111/j.1745-6584.1994.tb00609.x

    Article  Google Scholar 

  3. Dutton, S.P.; Willis, B.J.: Comparison of outcrop and subsurface sandstone permeability distribution, lower cretaceous fall river formation, South Dakota and Wyoming. J. Sedim. Res. 68(5), 890–900 (1998). https://doi.org/10.2110/jsr.68.890

    Article  Google Scholar 

  4. Fossen, H.; Schultz, R.A.; Torabi, A.: Conditions and implications for compaction band formation in the Navajo sandstone, Utah. J. Struct. Geol. 33(10), 1477–1490 (2011). https://doi.org/10.1016/j.jsg.2011.08.001

    Article  Google Scholar 

  5. Rogiers, B.; Beerten, K.; Smeekens, T.; Mallants, D.: Air permeability measurements on neogene and quaternary sediments from the campine area: using outcrop analogues for determining hydrodynamic aquifer properties. In: SCK CEN ER-177, p. 23 (2011)

  6. Dykstra, H.; Parsons, R.: The Prediction of Oil by Waterflood, 2nd edn. API, New York (1959)

    Google Scholar 

  7. Eijpe, R.; Weber, K.: Mini-permeameters for consolidated rock and unconsolidated sand. Am. Assoc. Pet. Geol. Bull. 55(2), 307–309 (1974)

    Google Scholar 

  8. Goggin, D.J.; Thrasher, R.L.; Lake, L.W.: A theoretical and experimental analysis of minipermeameter response including gas slippage and high velocity flow effects. Insitu 12, 79–116 (1988)

    Google Scholar 

  9. Filomena, C.M.; Hornung, J.; Stollhofen, H.: Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices. Solid Earth 5(1), 1–11 (2014). https://doi.org/10.5194/se-5-1-2014

    Article  Google Scholar 

  10. Hurst, A.; Goggin, D.: Probe permeametry: an overview and bibliography. Am. Assoc. Pet. Geol. Bull. 79(3), 463–473 (1995). https://doi.org/10.1306/8D2B1566-171E-11D7-8645000102C1865D

    Article  Google Scholar 

  11. Jones, S.: A new, fast, accurate pressure-decay probe permeameter. Soc. Pet. Eng. 9(03), 193–199 (1994). https://doi.org/10.2118/24757-PA

    Article  Google Scholar 

  12. Jones, S.: A rapid accurate unsteady-state Klinkenberg permeameter. Soc. Pet. Eng. J. 12(05), 383–397 (1972). https://doi.org/10.2118/3535-PA

    Article  Google Scholar 

  13. Dinwiddie, C.L.; Molz, F.J.; Castle, J.W.: A new small drill hole minipermeameter probe for in situ permeability measurement: fluid mechanics and geometrical factors. Water Resour. Res. (2003). https://doi.org/10.1029/2001WR001179

    Article  Google Scholar 

  14. Al-Jabari, N.; Bowen, D.; Smart, B.; Somerville, J.: First non-contact mini-permeameter. In: International Symposium of the Society of Core Analysts (2012)

  15. Brown, S.; Smith, M.: A transient-flow syringe air permeameter. Geophysics (2013). https://doi.org/10.1190/geo2012-0534.1

    Article  Google Scholar 

  16. Young, G.R.: Determining Permeability Anisotropy from a Core Plug Using a Minipermeameter. University of Texas at Austin, Austin (1989)

    Google Scholar 

  17. Manrique, J.F.; Kasap, E.; Georgi, D.: Effects of heterogeneity and anisotropy on probe measured permeabilities. SPE J. 2(01), 16–23 (1997). https://doi.org/10.2118/27650-PA

    Article  Google Scholar 

  18. Al-Azani, K.; Al-Yousef, H.; Mahmoud, M.: Effect of permeability anisotropy on probe permeameter measurements. In: SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers, Manama, Bahrain (2019). https://doi.org/10.2118/194769-MS

  19. Tidwell, V.C.; Wilson, J.L.: Laboratory method for investigating permeability upscaling. Water Resour. Res. 33(7), 1607–1616 (1997). https://doi.org/10.1029/97WR00804

    Article  Google Scholar 

  20. Tartakovsky, D.M.; Moulton, J.D.; Zlotnik, V.A.: Kinematic structure of minipermeameter flow. Water Resour. Res. 36(9), 2433–2442 (2000). https://doi.org/10.1029/2000WR900178

    Article  Google Scholar 

  21. Ayan, C., et al.: Measuring permeability anisotropy: the latest approach. Oilf. Rev. 6(4), 24–35 (1994)

    Google Scholar 

  22. Meyer, R.: Anisotropy of Sandstone Permeability (2002)

  23. Lewis, J.J.M.: Outcrop-derived quantitative models of permeability heterogeneity for genetically different sand bodies. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, Houston, Texas (1988). https://doi.org/10.2118/18153-MS

  24. Clavaud, J.-B.; Maineult, A.; Zamora, M.; Rasolofosaon, P.; Schlitter, C.: Permeability anisotropy and its relations with porous medium structure. J. Geophys. Res. Solid Earth (2008). https://doi.org/10.1029/2007JB005004

    Article  Google Scholar 

  25. Ghanizadeh, A.; Bhowmik, S.; Haeri-Ardakani, O.; Sanei, H.; Clarkson, C.R.: A comparison of shale permeability coefficients derived using multiple non-steady-state measurement techniques: examples from the Duvernay Formation, Alberta (Canada). Fuel 140, 371–387 (2015). https://doi.org/10.1016/j.fuel.2014.09.073

    Article  Google Scholar 

  26. Mokhtari, M.; Tutuncu, A.N.: Characterization of anisotropy in the permeability of organic-rich shales. J. Pet. Sci. Eng. 133, 496–506 (2015). https://doi.org/10.1016/j.petrol.2015.05.024

    Article  Google Scholar 

  27. Morton, K.; Thomas, S.; Corbett, P.; Davies, D.: Detailed analysis of probe permeameter and interval pressure transient test permeability measurements in a heterogeneous reservoir. Pet. Geosci. 8(3), 209–216 (2002). https://doi.org/10.1144/petgeo.8.3.209

    Article  Google Scholar 

  28. Camargo, J.E.N.; Jensen, J.L.: Analysis of fault permeability using mapping and flow modeling, hickory sandstone aquifer, Central Texas. Nat. Resour. Res. 21(3), 395–409 (2012). https://doi.org/10.1007/s11053-012-9181-5

    Article  Google Scholar 

  29. Hadley, D.R.; Abrams, D.B.; Roadcap, G.S.: Modeling a large-scale historic aquifer test: insight into the hydrogeology of a regional fault zone. Groundwater 58(3), 453–463 (2020). https://doi.org/10.1111/gwat.12922

    Article  Google Scholar 

  30. Sirat, M.; Noufal, A.; Simon, J.; Zhang, X.; Subbiah, S.K.: Geomechanical heterogeneity diagnosis of carbonate reservoirs in onshore Abu Dhabi. In: Abu Dhabi International Petroleum Exhibition and Conference, p. 18 (2015). https://doi.org/10.2118/177569-MS

  31. Ertekin, T.; Abou-Kassem, J.; King, G.: Formulation of basic equations for single-phase flow. In: Basic Applied Reservoir Simulation, vol. 7, pp. 57–74 (2001). Society of Petroleum Engineers, Richardson, Texas, US

  32. Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Charact. 210, 307–357 (1911)

    MATH  Google Scholar 

  33. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn. Oxford University Press, Oxford (1985)

    Google Scholar 

  34. Darcy, H.: Les fontaines publiques de la ville de Dijon, Dalmont. Dalmont, Paris (1856)

    Google Scholar 

  35. Klinkenberg, L.J.: The permeability of porous media to liquids and gases. In: Drilling and Production Practice. American Petroleum Institute, New York, New York, p. 14 (1941), [Online]

  36. Al-Yousef, H.Y.: Permeability anisotropy measurement on whole cores—analytical solution and application. In: SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers, Manama, Bahrain (2005). https://doi.org/10.2118/93559-MS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Azani, K., El-Husseiny, A., Mahmoud, M. et al. Numerical and Experimental Study to Determine the Permeability Anisotropy in Porous Rocks from Probe Permeameter Measurements. Arab J Sci Eng 46, 7019–7030 (2021). https://doi.org/10.1007/s13369-021-05433-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05433-w

Keywords

Navigation