Skip to main content
Log in

Magnetic properties, magnetoresistive, and magnetocaloric effects of AlCrFeCoNiCu thin-film high-entropy alloys prepared by the co-evaporation technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work shows the comprehensive investigations of phase state, magnetic properties, magnetoresistive, and magnetocaloric effects of AlCrFeCoNiCu thin-film high-entropy alloy (HEA). Mosaic target with six segments has been used for tailoring the film composition. The results show that the magnetic and magnetoresistive properties of HEA thin films are significantly affected by the presence of the face-centered-cubic (FCC) phase, which is formed during the annealing process. High-defective structure of thin films in as-deposited state results in the presence of the paramagnetic phase causing the absence of spontaneous magnetization and magnetoresistance. The formation of the FCC phase during heat treatment leads to the anisotropic magnetoresistance appearance. Besides, the low values of coercivity and magnetization at 300 K of annealed thin films point out that these samples could be potentially useful for the magnetocaloric application due to the compositional tunability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Luo, L. Sun, Y. Zhang, H.B. Huang, M. Yang, Y. Zhai, J. Du, H.R. Zhai, Investigations of magnetic properties of Tb-doped Ni78Fe22 thin films. Phys. Status Solidi C 9, 81–84 (2012). https://doi.org/10.1002/pssc.201084182

    Article  ADS  Google Scholar 

  2. I.M. Pazukha, D.O. Shuliarenko, O.V. Pylypenko, L.V. Odnodvorets, Concentration and heat treatment effects on magnetoresistive properties of Ag-added Ni80Fe20 film systems. J. Magn. Magn. Mater. 485, 89–94 (2019). https://doi.org/10.1016/j.jmmm.2019.04.079

    Article  ADS  Google Scholar 

  3. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–551 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  ADS  Google Scholar 

  4. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  5. E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4

    Article  ADS  Google Scholar 

  6. O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys—a review. J. Mater. Res. 33, 3092–3128 (2018) https://doi.org/10.1557/jmr.2018.153.

    Article  ADS  Google Scholar 

  7. C.-C. Juan, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, W.-R. Wang, C.-C. Yang, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62, 76–83 (2015) https://doi.org/10.1016/j.intermet.2015.03.013.

    Article  Google Scholar 

  8. C. Yang, J. Lin, J. Zeng, S. Qu, X. Li, W. Zhang, D. Zhang, High-strength AlCrFeCoNi high entropy alloys fabricated by using metallic glass powder as precursor. Adv. Eng. Mater. 18, 348–353 (2016). https://doi.org/10.1002/adem.201500339

    Article  Google Scholar 

  9. T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, R. Banerjee, A combinatorial assessment of AlxCrCuFeNi2 (0<x<1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties, Acta Mater. 116, 63–76 (2016). https://doi.org/10.1016/j.actamat.2016.06.025

  10. M.M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, first ed., (Springer International Publishing: Cham, Switzerland, 2016), 516p.

  11. X.Z. Lim, Metal mixology stronger, tougher, stretchier: with a simple new recipe, metallurgists are creating a generation of alloys with remarkable properties. Nature 533, 306–307 (2016). https://doi.org/10.1038/533306a

    Article  ADS  Google Scholar 

  12. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Ly, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta. Mater. 62, 105–113 (2014). https://doi.org/10.1016/j.actamat.2013.09.037

    Article  ADS  Google Scholar 

  13. P. Li, A. Wang, C.T. Liu, A ductile high entropy alloy with attractive magnetic properties. J. Alloys Compd. 694, 55–60 (2017). https://doi.org/10.1016/j.jallcom.2016.09.186

    Article  Google Scholar 

  14. P.F. Yu, L.J. Zhang, H. Chen, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70, 82–87 (2016). https://doi.org/10.1016/j.intermet.2015.11.005

    Article  Google Scholar 

  15. M. Balli, S. Jandl, P. Fournier, A. Kedous-Lebouc, Advanced materials for magnetic cooling: fundamentals and practical aspects, Appl. Phys. Rev. 4, 021305–1−021305–27 (2017). https://doi.org/10.1063/1.4983612

  16. S.-M. Na, P.K. Lambert, H. Kim, J. Paglione, N.J. Jones, Thermomagnetic properties and magnetocaloric effect of FeCoNiCrAl-type high-entropy alloys. AIP Adv. 9, 035010 (2019). https://doi.org/10.1063/1.5079394

    Article  ADS  Google Scholar 

  17. V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, P. Gillon, Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy. Mater. Chem. Phys. 117, 142–147 (2009). https://doi.org/10.1016/j.matchemphys.2009.05.025

    Article  Google Scholar 

  18. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04

    Article  ADS  Google Scholar 

  19. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng. A 491, 154–158 (2008). https://doi.org/10.1016/j.msea.2008.01.064

    Article  Google Scholar 

  20. S. Singh, N. Wanderka, K. Kiefer, U. Glatzel, J. Banhart, Decomposition in multicomponent AlCoCrCuFeNi high entropy alloy. Acta Mater. 59, 182–190 (2011). https://doi.org/10.1016/j.actamat.2010.09.023

    Article  ADS  Google Scholar 

  21. R. Kulkarni, B.S. Murty, V. Srinivas, Study of microstructure and magnetic properties of AlNiCo(CuFe) high entropy alloy. J. Alloys Compd. 746, 194–199 (2018). https://doi.org/10.1016/j.jallcom.2018.02.275

    Article  Google Scholar 

  22. J. Huo, J.-Q. Wang, W.-H. Wang, Denary high entropy metallic glass with large magnetocaloric effect. J. Alloys Compd. 776, 202–206 (2018). https://doi.org/10.1016/j.jallcom.2018.10.328

    Article  Google Scholar 

  23. S.I. Vorobiov, Ia.M. Lytvynenko, I.O. Shpetnyi, O.V. Shutyleva, A.M. Chornous, Magnetic and magnetoresistance properties of films of the ferromagnetic metals. Metallofiz. Nov. Tekhnol. 37, 1049–1062 (2015). https://doi.org/10.15407/mfint.37.08.1049

  24. V. Ilkovič, Comparison of the effect of the exchange and single-ion anisotropy on the magnetic properties of thin ferromagnetic films. J. Magn. Magn. Mater. 402, 196–199 (2016). https://doi.org/10.1016/j.jmmm.2015.10.094

    Article  ADS  Google Scholar 

  25. C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, On the elemental effect of AlCoCrCuFeNi high entropy alloy system. Mater. Lett. 61, 1–5 (2007). https://doi.org/10.1016/j.matlet.2006.03.140

    Article  Google Scholar 

  26. M.-H. Tsai, Physical properties of high entropy alloys. Entropy 15, 5338–5345 (2013). https://doi.org/10.3390/e15125338

    Article  ADS  MATH  Google Scholar 

  27. A. Perrin, M. Sorescu, M. Burton, D. Laughlin, M. McHenry, The role of compositional tuning of the distributed exchange on magnetocaloric properties of high-entropy alloys. JOM 69, 2125–2129 (2017). https://doi.org/10.1007/s11837-017-2523-3

    Article  Google Scholar 

  28. M. Kurniawan, A. Perrin, P. Xu, V. Keylin, M. McHenry, Curie temperature engineering in high entropy alloys (HEAs) for magnetocaloric applications. IEEE Magn. Lett. 7, 1–5 (2016). https://doi.org/10.1109/LMAG.2016.2592462

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the State Program of the Ministry of Education and Science of Ukraine No. 0120U102005 (2020-2022). The work at Šafárik University was supported by grant VEGA No. 1/0204/18, and the grants of the Slovak Research and Development Agency under the contract No. APVV-17-0059, APVV-18-0358, and SK-BY-RD-19-0008. This publication is the result of the project implementation: New unconventional magnetic materials for applications, ITMS 313011T544, supported by the Operational Programme Integrated Infrastructure 2014–2020 (OPII) funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vorobiov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobiov, S., Pylypenko, O., Bereznyak, Y. et al. Magnetic properties, magnetoresistive, and magnetocaloric effects of AlCrFeCoNiCu thin-film high-entropy alloys prepared by the co-evaporation technique. Appl. Phys. A 127, 179 (2021). https://doi.org/10.1007/s00339-020-04145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04145-6

Keywords

Navigation