Skip to main content
Log in

Design and implementation of coupler-based Ka-band CMOS power splitters

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

We propose a novel power splitter (or divider) comprising two back-to-back quarter-wavelength (λ/4) coupled lines (i.e. coupler). To improve the isolation between the output ports (i.e. ports 2 and 3), an isolation resistor R is included. Three power dividers are designed and implemented. To enhance the reflection coefficients, and S21 and S31 and their amplitude imbalance (AI) and phase difference (PD), the output ports transmission lines (TLs) of the first power divider (i.e. divider-1) with R of 100 Ω adopt tapered width from 8 to 3 μm. For contrast, the second power divider (i.e. divider-2) with R of 100 Ω uses tapered width from 8 to 3 μm for the input port (i.e. port 1) TL. To study the effect of R on the performance of the power divider, the third power divider (i.e. divider-3) has the same layout with divider-2 except R equal to 50 Ω. Prominent results are obtained. For instance, divider-1 occupies a small chip area of 0.026 mm2 (i.e. 2.3 × 10−4λ 20 ), one of the smallest normalized chip areas ever reported for millimeter-wave power dividers. Moreover, at 33 GHz, divider-1 achieves excellent S11 of − 13.1 dB, S22 of − 14 dB, S33 of − 14.2 dB, and S32 of − 17.9 dB, S21 of − 4.22 dB, S31 of − 3.99 dB, AI of − 0.23 dB, and PD of 2.1°. The remarkable results of the proposed power divider structure indicate that it is suitable for Ka-band and even higher frequency transceivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kibaroglu, K., Sayginer, M., & Rebeiz, G. M. (2018). A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a 2 × 2 beamformer flip-chip unit cell. IEEE Journal of Solid-State Circuits, 53(5), 1260–1274.

    Article  Google Scholar 

  2. Kim, H. T., Park, B. S., Song, S. S., Moon, T. S., Kim, S. H., Kim, J. M., et al. (2018). A 28-GHz CMOS direct conversion transceiver with packaged 2 × 4 antenna array for 5G cellular system. IEEE Journal of Solid-State Circuits, 53(5), 1245–1259.

    Article  Google Scholar 

  3. Ozgur, M., Zaghloul, M. E., & Gaitan, M. (2000). Micromachined 28-GHz power divider in CMOS technology. IEEE Microwave and Guided Wave Letters, 10(3), 99–101.

    Article  Google Scholar 

  4. Chiang, M. J., et al. (2007). A Ka-band CMOS Wilkinson power divider using synthetic quasi-TEM transmission lines. IEEE Microwave and Wireless Components Letters, 17(12), 837–839.

    Article  Google Scholar 

  5. Liang, W. F., Hong, W., & Chen, J. X. (2012). A Q-band compact Wilkinson power divider using asymmetrical shunt-stub in 90nm CMOS technology. In 2012 Asia Pacific microwave conference proceedings (pp. 974–976). IEEE.

  6. Oh, H. M., Lim, J. T., Lee, J. E., Lee, E. G., Lee, J., Choi, S. K., et al. (2016). 28 GHz Wilkinson power divider with λ/6 transmission lines in 65nm CMOS technology. In 2016 46th European microwave conference (EuMC) (pp. 206–209). IEEE.

  7. Ludwig, R., & Bogdanove, G. (2008). RF circuit design: Theory and applications (2nd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  8. Pozar, D. M. (2012). Microwave engineering (4th ed.). Hoboken: Wiley.

    Google Scholar 

  9. Lin, Y. S., Lee, J. H., Huang, S. L., Wang, C. H., Wang, C. C., & Lu, S. S. (2012). Design and analysis of a 21–29 GHz ultra-wideband receiver front-end in 0.18 μm CMOS technology. IEEE Microwave Theory and Techniques, 60(8), 2590–2604.

    Article  Google Scholar 

  10. Lin, Y. S., Chen, C. Z., Yang, H. Y., Chen, C. C., Lee, J. H., Huang, G. W., et al. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Transaction on Microwave Theory and Techniques, 58(2), 287–296.

    Article  Google Scholar 

  11. Chen, H. K., Lin, Y. S., & Lu, S. S. (2010). Analysis and design of a 1.6-28 GHz compact wideband LNA in 90 nm CMOS using a π-match input network. IEEE Transactions on Microwave Theory and Techniques, 58(8), 2092–2104.

    Article  Google Scholar 

  12. Hsiao, Y. C., Meng, C. C., & Peng, Y. H. (2017). Broadband CMOS Schottky-diode star mixer using coupled-CPW Marchand dual-baluns. IEEE Microwave and Wireless Components Letters, 27(5), 500–502.

    Article  Google Scholar 

  13. Tabesh, M., Arbabian, A., & Niknejad, A. (2011). 60GHz low-loss compact phase shifters using a transformer-based hybrid in 65nm CMOS. In 2011 IEEE custom integrated circuits conference (CICC) (pp. 1–4). IEEE.

  14. Li, W. T., Kuo, Y. H., Wu, Y. M., Cheng, J. H., Huang, T. W., & Tsai, J. H. (2012). An X-band full-360 reflection type phase shifter with low insertion loss. In 2012 7th European microwave integrated circuit conference (pp. 754–757). IEEE.

  15. Garg, R., & Natarajan, A. S. (2017). A 28 GHz low-power phased-array receiver front-end with 360° RTPS phase shift range. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4703–4714.

    Article  Google Scholar 

  16. Tseng, S. C., Meng, C. C., Chang, C. H., Wu, C. K., & Huang, G. W. (2006). Monolithic broadband Gilbert micromixer with an integrated Marchand balun using standard silicon IC process. IEEE Transactions on Microwave Theory and Techiques, 54(12), 4362–4371.

    Article  Google Scholar 

  17. Lin, Y. S., & Lan, K. S. (2020). Coupled-line-based Ka-band CMOS power dividers. IEEE Microwave and Wireless Components Letters, 30(3), 253–256.

    Article  Google Scholar 

  18. Zhou, Y., Huang, Y. M., Jin, H., Ding, S., Xu, D., Silvestri, L., et al. (2018). Slow-wave half-mode substrate integrated waveguide 3-dB Wilkinson power divider/combiner incorporating nonperiodic patterning. IEEE Microwave and Wireless Components Letters, 28(9), 765–767.

    Article  Google Scholar 

  19. Kim, K., & Nguyen, C. (2015). An ultra-wideband low-loss millimeter-wave slow-wave Wilkinson power divider on 0.18 μm SiGe BiCMOS Process. IEEE Microwave and Wireless Components Letters, 25(5), 331–333.

    Article  Google Scholar 

  20. Lin, Y. S., & Wang, Y. E. (2019). Design and analysis of a 94-GHz CMOS down-conversion mixer with CCPT-RL-based IF load. IEEE Transactions on Circuits and Systems-I: Regular Papers, 66(8), 3148–3161.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Technology (MOST) of the R.O.C. under Contracts MOST108-2221-E-260-015-MY3 and MOST108-2221-E-260-016-MY3. The authors are very grateful for the support from Taiwan Semiconductor Research Institute (TSRI) for chip fabrication and RF measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo-Sheng Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Yeh, BT. & Lan, KS. Design and implementation of coupler-based Ka-band CMOS power splitters. Analog Integr Circ Sig Process 108, 25–36 (2021). https://doi.org/10.1007/s10470-021-01801-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01801-6

Keywords

Navigation