• Open Access

Symmetry constraints for vector scattering and transfer matrices containing evanescent components: Energy conservation, reciprocity, and time reversal

Niall Byrnes and Matthew R. Foreman
Phys. Rev. Research 3, 013129 – Published 10 February 2021

Abstract

In this paper we study the scattering and transfer matrices for electric fields defined with respect to an angular spectrum of plane waves. For these matrices, we derive the constraints that are enforced by conservation of energy, reciprocity, and time reversal symmetry. Notably, we examine the general case of vector fields in three dimensions and allow for evanescent field components. Moreover, we consider fields described by both continuous and discrete angular spectra, the latter being more relevant to practical applications, such as optical scattering experiments. We compare our results to better-known constraints, such as the unitarity of the scattering matrix for far-field modes, and show that previous results follow from our framework as special cases. Finally, we demonstrate our results numerically with a simple example of wave propagation at a planar glass-air interface, including the effects of total internal reflection. Our formalism makes minimal assumptions about the nature of the scattering medium and is thus applicable to a wide range of scattering problems.

  • Figure
  • Figure
  • Received 30 November 2020
  • Accepted 29 January 2021

DOI:https://doi.org/10.1103/PhysRevResearch.3.013129

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalStatistical Physics & ThermodynamicsGeneral Physics

Authors & Affiliations

Niall Byrnes and Matthew R. Foreman*

  • Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom

  • *Corresponding author: matthew.foreman@imperial.ac.uk

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 1 — February - April 2021

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×