Skip to main content
Log in

Application of Modified Hypervirial and Ehrenfest Theorems and Several Their Consequences

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

It is well-known that if the physical system is located in the restricted area, additional “surface terms” emerge in the traditional form of hypervirial and/or Erenfest theorems. In the current literature mainly one-dimensional Schrodinger equation was considered in this respect. Our observation consists in that this situation emerges automatically in spherical coordinates, as well as one of the coordinates, namely radial distance, is restricted by a half-line. In particular, these considerations are clearly manifested, when one consider spherically symmetric potentials and operators, depended only on distance. Evidently, these additional terms give rise owing the boundary conditions for wave functions and the behavior of the considered operators at the origin of coordinates. We have analyzed the role of these additional terms for various model- potentials in the Schrodinger equation. We consider regular, as well as soft-singular potentials and show that the inclusion of these terms is very important for obtaining correct physical results. Some complicated integrals for hypergeometric functions are also derived. The modified virial relations, derived below, is converted into the usual relations, when the additional terms are absent and when present, they give reasonable corrections in correct direction. This fact also provides its legitimacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. G. Esteve, “Anomalies in conservation laws in the Hamiltonian,” Phys. Rev. D: Part. Fields 34, 674–677 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. De Vincenzo, “Confinement average forces and the Ehrenfest theorem for a one-dimensional particle,” Pramana 80, 797–810 (2013).

    Article  ADS  Google Scholar 

  3. S. De Vincenzo, “On average forces and the Ehrenfest theorem for a one-dimensional particle in a semi-infinite interval,” Rev. Mex. Fis. E 59, 84–90 (2013).

    MathSciNet  Google Scholar 

  4. V. Alonso, S. De Vincenzo, and L. A. Gonznalez-Diaz, “On the Ehrenfest theorem in a one-dimensional box,” Nuovo Cimento Soc. Ital. Fis. B 115, 155–164 (2000).

    ADS  Google Scholar 

  5. V. Alonso, S. De Vincenzo, and L. A. Gonzalez-Diaz, “Ehrenfest’s theorem and Bohm’s quantum potential in a one-dimensional box,” Phys. Lett. A 287, 23–30 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. Alonso and S. De Vincenzo, “Ehrenfest-type theorems for a one-dimensional Dirac particle,” Phys. Scr. 61, 396–402 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. De Vincenzo, “On time derivatives or \(\left\langle {\hat {x}} \right\rangle \) and \(\left\langle {\hat {p}} \right\rangle \): formal1D calculations,” Rev. Bras. Ens. Fis. 35, 2308-1–2308-9 (2013).

  8. S. De Vincenzo, “Operators and bilinear densities in the Dirac formal 1D Eherenfest theorem,” J. Phys. Stud. 19, 1003-1–1003-10 (2015).

  9. J. G. Esteve, F. Falceto, and P. Giri, “Boundary contributions to the hypervirial theorem,” Phys. Rev. A 85, 022104-1–022104-5 (2012); arXiv:1201.4281; J. G. Esteve, “Origin of the anomalies: The modified Heisenberg equation, “ Phys. Rev. D: Part. Fields 66, 125013-1–125013-4 (2002); arXiv:0207164 [hep-th] .

  10. G. Friesecke and M. Koppen, “On the Ehrenfest theorem of quantum mechanics,” J. Math. Phys. 50, 082102-1–082102-6 (2009); arXiv:0907.1877v1[math-ph]; G. Friesecke and B. Schmidt, “A sharp version of Ehrenfest’s theorem for general self-adjoint operators,” Proc. R. Soc. A 466, 2137–2143 (2010); arXiv: 1003.3372v1[math.FA].

  11. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1977).

    MATH  Google Scholar 

  12. D. Fitts, Principles of Quantum Mechanics, as Applied to Chemistry and Chemical Physics (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  13. A. Khelashvili and T. Nadareishvili, “Hypervirial and Ehrenfest theorems in spherical coordinates: Systematic approach”, Phys. Part. Nucl. 51, 107–121 (2020); arXiv:1806.01268 [quant-ph].

  14. A. Khelashvili and T. Nadareishvili, “What is the boundary condition for the radial wave function of the Schrodinger equation?,” Am. J. Phys. 79, 668–671 (2011); arXiv:1009.2694 [quant-ph].

    Article  ADS  Google Scholar 

  15. A. Khelashvili and T. Nadareishvili, “On some consequences of the Laplacian’s singularity at the origin in spherical coordinates,” Eur. J. Phys. 35, 065026-1–065026-6 (2014).

    Article  Google Scholar 

  16. A. Khelashvili and T. Nadareishvili, “Singular behavior of the Laplace operator in polar spherical coordinates and some of its consequences for the radial wave function at the origin of coordinates,” Phys. Part. Nucl. Lett. 12, 11–25 (2015); arXiv:1502.04008 [hep-th].

  17. A. Khelashvili and T. Nadareishvili, “Dirac’s reduced radial equations and the problem of additional solutions,” Int. J. Mod. Phys. E 26, 1750043-1–1750043-15 (2017).

  18. R. Newton, Scattering Theory of Waves and Particles, 2nd ed. (Dover Publ., New York, 2002).

    MATH  Google Scholar 

  19. A. M. Perelomov and Ya. B. Zeldovich, Quantum Mechanics: Selected Topics (Word Sci., 1998).

    Book  Google Scholar 

  20. O. Hirschfelder and C. Coulson, “Hypervirial theorems applied to molecular quantum mechanics,” J. Chem. Phys. 36, 941–946 (1962).

    Article  ADS  Google Scholar 

  21. C. V. Sukumar, “Generalized virial theorems in classical and quantum mechanics” (2014), arXiv:1410.5592 [quant-ph].

  22. T. Nadareishvili and A. Khelashvili, “Generalization of the hypervirial and Feynman–Hellman theorems” (2013), arXiv:1307.7972 [math-ph].

  23. C. Quigg and J. L. Rosner, “Quantum mechanics with applications to quarkonium,” Phys. Rep. 56, 167–235 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  24. H. A. Kramers, Quantum Mechanics (North Holland Publ. Co., 1951).

    Google Scholar 

  25. J. Epstein and S. Epstein, “Some applications of hypervirial theorems to the calculation of average values,” Am. J. Phys. 30, 266–268 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  26. U. Roy, S. Ghosh, T. Shreecharan, and K. Bhattacharya, “Reality of linear and angular momentum expectation values in bound states” (2007), arXiv: 0704.0373[quant-ph].

  27. U. Roy, S. Ghosh, and K. Bhattacharya, “Some intricacies of the momentum operator in quantum mechanics” (2007), arXiv:0706.0924 [quant-ph].

  28. H. Grosse and A. Martin, “Exact results on potential models for quarkonium systems,” Phys. Rep. 60, 341–392 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Prudnikov, Y. Brickov, and O. Marichev, Integrals and Sums. Elementary Functions (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  30. S. Pasternack, “A generalization of the polynomials F n(x),” London, Edinburgh, Dublin Philos. Mag. J. Sci., Ser. 7 28, 209–226 (1939);

    MathSciNet  Google Scholar 

  31. R. Cordero-Soto and S. Suslov, “Expectation values rp for harmonic oscillator in Rn” (2009), arXiv:0908.0032v3 [math-ph].

  32. O. Vallee and M. Soares, Airy Functions and Applications to Physics (Word Sci., Imp. College Press, 2004).

  33. V. Galitski, B. Karnakov, V. Kogan, and V. Galitski, Exploring Quantum Mechanics (Oxford Univ. Press, 2011).

    MATH  Google Scholar 

  34. V. Smirnov, Course of High Mathematics (St. Petersburg, 2010), Vol. 3, Part 2 [in Russian].

    Google Scholar 

  35. A. A. Khare. “The relative magnitudes of the derivatives of 1P(D,F,…) and 2P(D,F,…) wave functions at the origin,” Nucl. Phys. B 181, 347 (1981).

    Article  ADS  Google Scholar 

  36. R. Van Royen and V. F. Weisskopf, “Hadron decay processes and the quark model,” Nuovo Cimento Soc. Ital. Fis. 50, 617–645 (1967).

    Article  ADS  Google Scholar 

  37. S. Flugge, Practical Quantum Mechanics I (Springer-Verlag, Berlin and New York, 1971)

    Book  Google Scholar 

  38. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Natl. Bur. Stand., 1964).

    MATH  Google Scholar 

  39. F. Calogero, “Solution of a three-body problem in one dimension,” J. Math. Phys. 10, 2191–2196 (1969);

    Article  ADS  Google Scholar 

  40. F. Calogero, “Ground state of a one-dimensional N‑body system,” J. Math. Phys. 10, 2197–2200 (1969).

    Article  ADS  Google Scholar 

  41. B. Basu-Mallick, P. K. Ghosh, and K. S. Gupta, “Inequivalent quantizations of the rational Calogero model,” Phys. Lett. A 31, 87–92 (2003); arXiv:hep-th/0208132.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teimuraz Nadareishvili.

APPENDIX

APPENDIX

Let consider various examples and find corresponding integrals:

(2) The Hulten potential:

$$V = - \frac{{{{V}_{0}}}}{{{{e}^{{\frac{r}{a}}}} - 1}}\,.$$
(A.1)

The solution of the Schrodinger equation in this case (\(l = 0\)) is [36]

$$u = rR = {{C}_{{0{{n}_{r}}}}}{{e}^{{ - \eta r}}}F\left( {\alpha ,\beta ,\gamma ;{{e}^{{ - \frac{r}{a}}}}} \right).$$
(A.2)

Here

$$\begin{gathered} \eta = \sqrt { - \frac{{2m{{E}_{{0,{{n}_{r}}}}}}}{{{{\hbar }^{2}}}}} ,\,\,\,\,\alpha = \varepsilon + \sqrt {{{\varepsilon }^{2}} + {{\lambda }^{2}}} , \\ \beta = \varepsilon - \sqrt {{{\varepsilon }^{2}} + {{\lambda }^{2}}} ,\,\,\,\,\varepsilon = \eta a,\,\,\,\,\lambda = {{\left( {\frac{{2m{{a}^{2}}{{V}_{0}}}}{{{{\hbar }^{2}}}}} \right)}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}}. \\ \end{gathered} $$
(A.3)

\(F\)is a Hypergeometric function, \({{C}_{{0{{n}_{r}}}}}\)—normalization constant, and energy levels are obtainable from the condition

$$F\left( {\alpha ,\,\beta ,\,\gamma ;\,1} \right) = 0\,.$$
(A.4)

For this potential Eq. (4.18) takes the form

$$\begin{gathered} \frac{{C_{1}^{2}{{\hbar }^{2}}}}{{2m}} = \left\langle {\frac{{dV}}{{dr}}} \right\rangle = \frac{{{{V}_{0}}}}{a}{{\left( {{{C}_{{0{{n}_{r}}}}}} \right)}^{2}} \\ \times \,\,\int\limits_0^\infty {{{e}^{{ - 2\eta r}}}{{e}^{{\frac{r}{a}}}}{{{\left( {{{e}^{{\frac{r}{a}}}} - 1} \right)}}^{2}}{{F}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,{{e}^{{ - \frac{r}{a}}}}} \right)} dr. \\ \end{gathered} $$
(A.5)

Behavior of (A.2) at the origin gives

$$\mathop {\lim }\limits_{r \to 0} u(r) = - {{C}_{{0{{n}_{r}}}}}F'\left( {\alpha ,\,\beta ,\,\gamma ;\,1} \right)\frac{r}{a}\,.$$
(A.6)

or

$${{C}_{1}} = - {{C}_{{0{{n}_{r}}}}}F{\kern 1pt} '\left( {\alpha ,\,\beta ,\,\gamma ;\,1} \right)\frac{1}{a}\,.$$
(A.7)

Then Eq. (4.18) gives

$$\begin{gathered} \int\limits_0^\infty {{{e}^{{ - 2\eta r}}}{{e}^{{\frac{r}{a}}}}{{{\left( {{{e}^{{\frac{r}{a}}}} - 1} \right)}}^{2}}{{F}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,{{e}^{{ - \frac{r}{a}}}}} \right)} dr \\ = - \frac{{a{{\hbar }^{2}}}}{{2m{{V}_{0}}{{a}^{2}}}}F{\kern 1pt} {{'}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,1} \right)\,, \\ \end{gathered} $$
(A.8)

or, accounting notations (A.3), we have

$$\begin{gathered} \int\limits_0^\infty {{{e}^{{ - 2\eta r}}}{{e}^{{\frac{r}{a}}}}{{{\left( {{{e}^{{\frac{r}{a}}}} - 1} \right)}}^{2}}{{F}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,{{e}^{{ - \frac{r}{a}}}}} \right)} dr \\ = - \frac{a}{{{{\lambda }^{2}}}}F{\kern 1pt} {{'}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,1} \right)\,. \\ \end{gathered} $$
(A.9)

But from (A.4) and

$$2\eta = \frac{{\alpha + \beta }}{a}\,,$$
(A.10)

and finally, we get

$$\begin{gathered} \int\limits_0^\infty {{{e}^{{ - \frac{{\alpha + \beta }}{a}r}}}{{e}^{{\frac{r}{a}}}}{{{\left( {{{e}^{{\frac{r}{a}}}} - 1} \right)}}^{2}}{{F}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,{{e}^{{ - \frac{r}{a}}}}} \right)} dr \\ = - \frac{a}{{{{\lambda }^{2}}}}{{{F'}}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,1} \right)\,. \\ \end{gathered} $$
(A.11)

Moreover, again from (A.3)

$${{\lambda }^{2}} = - \alpha \beta \,.$$
(A.12)

Therefore

$$\begin{gathered} \int\limits_0^\infty {{{e}^{{ - \frac{{\alpha + \beta }}{a}r}}}{{e}^{{\frac{r}{a}}}}{{{\left( {{{e}^{{\frac{r}{a}}}} - 1} \right)}}^{2}}{{F}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,{{e}^{{ - \frac{r}{a}}}}} \right)} dr \\ = \frac{a}{{\alpha \beta }}{{{F'}}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,1} \right)\,. \\ \end{gathered} $$
(A.13)

Now we can use the recurrence relation for derivatives of this function [37]

$$F{\kern 1pt} '\left( {a,b,c;z} \right) = \frac{{ab}}{c}F\left( {a + 1,b + 1,c + 1;z} \right)\,.$$
(A.14)

And at the end we have

$$\begin{gathered} \int\limits_0^\infty {{{e}^{{ - \frac{{\alpha + \beta }}{a}r}}}{{e}^{{\frac{r}{a}}}}{{{\left( {{{e}^{{\frac{r}{a}}}} - 1} \right)}}^{2}}{{F}^{2}}\left( {\alpha ,\,\beta ,\,\gamma ;\,{{e}^{{ - \frac{r}{a}}}}} \right)} dr \\ = \frac{{\alpha \beta a}}{{{{\gamma }^{2}}}}{{F}^{2}}\left( {\alpha + 1,\,\beta + 1,\,\gamma + 1;\,1} \right)\,. \\ \end{gathered} $$
(A.15)

(3) The Morse potential:

$$V\left( r \right) = D\left( {{{e}^{{ - 2\alpha x}}} - 2{{e}^{{ - \alpha x}}}} \right);\,\,\,\,x = \frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}.$$
(A.16)

This potential has a wide application in Chemistry for studying two-atomic molecules.

The solution of the s-wave Schrodinger equation looks like [36]

$$u = rR = {{C}_{{0{{n}_{r}}}}}{{y}^{{\frac{\beta }{\alpha }}}}{{e}^{{ - \frac{y}{2}}}}F\left( {a,c,y} \right)\,.$$
(A.17)

Here \(F\)is a confluent hypergeometric function, and the following notations are used

$$\begin{gathered} y = \frac{{2\gamma }}{\alpha }{{e}^{{ - \alpha x}}};\,\,\,\,c = 2\frac{\beta }{\alpha } + 1\,;\,\,\,\,\,a = \frac{1}{2}c - \frac{\gamma }{\alpha }; \\ {{\beta }^{2}} = - \frac{{2mEr_{0}^{2}}}{{{{\hbar }^{2}}}} > 0,\,\,\,\,{{\gamma }^{2}} = \frac{{2mDr_{0}^{2}}}{{{{\hbar }^{2}}}}\,. \\ \end{gathered} $$
(A.18)

Eigenvalues equation is

$$u\left( 0 \right) = F\left( {a,c,{{y}_{0}}} \right) = 0;\,\,\,\,{{y}_{0}} = \frac{{2\gamma }}{\alpha }{{e}^{\alpha }}.$$
(A.19)

Proceeding in a similar way as above, one finds the following equality

$$\begin{gathered} \int\limits_0^\infty {{{F}^{2}}\left( {a,c,\frac{{2\gamma }}{\alpha }{{e}^{{ - \alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}}} \right)\left( {{{e}^{{ - 2\alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}} - {{e}^{{ - \alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}}} \right)dr} \\ = \frac{{{{r}_{0}}}}{{2{{\gamma }^{2}}\alpha }}{{y}_{0}}^{{\frac{{2\beta }}{\alpha } + 2}}{{e}^{{ - {{y}_{0}}}}}\frac{{{{a}^{2}}}}{{{{c}^{2}}}}{{\left[ {F\left( {a + 1,c + 1;{{y}_{0}}} \right)} \right]}^{2}}\,. \\ \end{gathered} $$
(A.20)

Consider now relation (4.42), which gives

$$\begin{gathered} D\left\langle {r\left( {{{e}^{{ - 2\alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}} - {{e}^{{ - \alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}}} \right)} \right\rangle \\ = 2D\left\langle {\left( {{{e}^{{ - 2\alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}} - {{e}^{{ - \alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}}} \right)} \right\rangle - 2E. \\ \end{gathered} $$
(A.21)

In explicit form this equation means, according to notations (A.18)

$$\begin{gathered} \int\limits_0^\infty {{{F}^{2}}\left( {a,c,\frac{{2\gamma }}{\alpha }{{e}^{{ - \alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}}} \right)\left( {{{e}^{{ - 2\alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}} - {{e}^{{ - \alpha \left( {\frac{{r - {{r}_{0}}}}{{{{r}_{0}}}}} \right)}}}} \right)rdr} \\ = \frac{{{{r}_{0}}}}{{{{\gamma }^{2}}\alpha }}{{y}_{0}}^{{c + 1}}{{e}^{{ - {{y}_{0}}}}}\frac{{{{a}^{2}}}}{{{{c}^{2}}}} \\ \times \,\,{{\left[ {F\left( {a + 1,c + 1;{{y}_{0}}} \right)} \right]}^{2}} + \frac{{{{\alpha }^{2}}{{{\left( {c - 1} \right)}}^{2}}}}{{4{{\gamma }^{2}}}}\,. \\ \end{gathered} $$
(A.22)

(4) Wood–Saxon potential:

$$V\left( r \right) = - \frac{{{{V}_{0}}}}{{1 + {{e}^{{\frac{{r - R}}{a}}}}}};\,\,\,\,a \ll R$$
(A.23)

It is applied for description of neutron-nucleus interaction. For s-wave Schrodinger equation the solution is [36]

$$\begin{gathered} u = rR = {{C}_{{0{{n}_{r}}}}}{{y}^{\nu }}{{\left( {1 - y} \right)}^{\mu }} \\ \times \,\,F\left( {\mu + \nu ,\mu + \nu + 1,\,2\nu + 1;\,y} \right)\,. \\ \end{gathered} $$
(A.24)

Here \(F\) is a hypergeometric function and

$$\begin{gathered} y = \frac{1}{{1 + {{e}^{{\frac{{r - R}}{a}}}}}};\,\,\,\,\nu = \beta ;\,\,\,\,\,{{\mu }^{2}} = {{\beta }^{2}} - {{\gamma }^{2}}; \\ {{\beta }^{2}} = - \frac{{2mE{{a}^{2}}}}{{{{\hbar }^{2}}}} > 0,\,\,\,\,{{\gamma }^{2}} = \frac{{2m{{V}_{0}}{{a}^{2}}}}{{{{\hbar }^{2}}}}\,. \\ \end{gathered} $$
(A.25)

Spectrum is derived by the condition

$$\begin{gathered} u\left( 0 \right) = F\left( {\mu + \nu ,\mu + \nu + 1,2\nu + 1;{{y}_{0}}} \right) = 0; \\ {{y}_{0}} = \frac{1}{{1 + {{e}^{{ - \frac{R}{a}}}}}}. \\ \end{gathered} $$
(A.26)

It is easy to show that

$$\begin{gathered} \mathop {\lim }\limits_{r \to 0} u(r) = - {{C}_{{0{{n}_{r}}}}}{{y}_{0}}^{{\nu + 1}}{{\left( {1 - {{y}_{0}}} \right)}^{\mu }} \\ \times \,\,F{\kern 1pt} '\left( {\mu + \nu ,\mu + \nu + 1,2\nu + 1;{{y}_{0}}} \right)\frac{r}{a}\frac{{{{e}^{{ - \frac{R}{a}}}}}}{{1 + {{e}^{{ - \frac{R}{a}}}}}}. \\ \end{gathered} $$
(A.27)

So

$$\begin{gathered} {{C}_{1}} = - {{C}_{{0{{n}_{r}}}}}{{y}_{0}}^{{\nu + 1}}{{\left( {1 - {{y}_{0}}} \right)}^{\mu }} \\ \times \,\,F{\kern 1pt} '\left( {\mu + \nu ,\mu + \nu + 1,2\nu + 1;{{y}_{0}}} \right)\frac{1}{a}\frac{{{{e}^{{ - \frac{R}{a}}}}}}{{1 + {{e}^{{ - \frac{R}{a}}}}}}. \\ \end{gathered} $$
(A.28)

Analogous consideration, as above, gives the following relation

$$\begin{gathered} \int\limits_0^\infty {{{F}^{2}}\left( {\mu + \nu ,\mu + \nu + 1,2\nu + 1;\frac{1}{{1 + {{e}^{{\frac{{r - R}}{a}}}}}}} \right)} \\ \times \,\,\frac{{{{e}^{{\frac{{r - R}}{a}}}}}}{{{{{\left[ {1 + {{e}^{{\frac{{r - R}}{a}}}}} \right]}}^{2}}}}dr = - \frac{{{{a}^{3}}}}{{{{\gamma }^{2}}}}\left[ {y_{0}^{{\nu + 1}}{{{\left( {1 - {{y}_{0}}} \right)}}^{\mu }}} \right. \\ \times \,\,{{\left. {F{\kern 1pt} '\left( {\mu + \nu ,\,\mu + \nu + 1,\,2\nu + 1;\,{{y}_{0}}} \right)\frac{1}{a}\frac{{{{e}^{{ - \frac{R}{a}}}}}}{{1 + {{e}^{{ - \frac{R}{a}}}}}}} \right]}^{2}}\,. \\ \end{gathered} $$
(A.29)

We do not find these integrals (A.15), (A.20), (A.22) and (A.29) in accessible to us Tables and Handbooks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anzor Khelashvili, Teimuraz Nadareishvili Application of Modified Hypervirial and Ehrenfest Theorems and Several Their Consequences. Phys. Part. Nuclei 52, 155–168 (2021). https://doi.org/10.1134/S1063779621010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621010020

Keywords:

Navigation