Skip to main content
Log in

An Extension of the Quantile Optimization Problem with a Loss Function Linear in Random Parameters

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper studies the stochastic programming problem with a quantile criterion in the classical single-stage statement under the assumption that the loss function is linear in random parameters. An extension of this problem is the minimax one in which the inner maximum of the loss function is taken with respect to the realizations of the vector of random parameters over the kernel of its probability distribution, and the outer minimum is taken with respect to the optimized strategy over a given set of admissible strategies. The extension principle of optimization problems is used to establish the following result: under a sufficient condition in the form of a certain probabilistic constraint, the optimal solution of this minimax problem is also optimal in the original problem with the quantile criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kataoka, S. On a Stochastic Programming Model. Econometrica 31, 181–196 (1963).

    Article  MathSciNet  Google Scholar 

  2. Raik, E. O. On a Quantile Function in Stochastic Nonlinear Programming. Izv. Akad. Nauk ESSR, Fiz. Mat. 20(no. 2), 229–231 (1971).

    MathSciNet  Google Scholar 

  3. Kibzun, A. I. & Malyshev, V. V. A Generalized Minimax Approach to the Solution of Problems with Probability Constraints. Izv. Akad. Nauk SSSR, Tekh. Kibern. no. 1, 20–29 (1984).

    Google Scholar 

  4. Kibzun, A. I., Lebedev, A. A. & Malyshev, V. V. On the Reduction of a Problem with Probabilistic Constraints to the Equivalent Minimax One. Izv. Akad. Nauk SSSR, Tekh. Kibern. no. 4, 73–80 (1984).

    Google Scholar 

  5. Malyshev, V. V. & Kibzun, A. I. Analiz i sintez vysokotochnogo upravleniya letatelanymi apparatami (Analysis and Design of High-Precision Control of Aircrafts). (Mashinostroenie, Moscow, 1987).

    Google Scholar 

  6. Kibzun, A. I. & Kan, Yu. S. Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probability Criteria). (Fizmatlit, Moscow, 2009).

    Google Scholar 

  7. Ivanov, S. V. & Naumov, A. V. Algorithm to Optimize the Quantile Criterion for the Polyhedral Loss Function and Discrete Distribution of Random Parameters. Autom. Remote Control 73(no. 1), 105–117 (2012).

    Article  MathSciNet  Google Scholar 

  8. Vasil’eva, S. N. & Kan, Yu. S. Linearization Method for Solving Quantile Optimization Problems with Loss Function Depending on a Vector of Small Random Parameters. Autom. Remote Control 78(no. 7), 1251–1263 (2017).

    Article  MathSciNet  Google Scholar 

  9. Gurman, V. I. Printsip rasshireniya v zadachakh upravleniya (The Extension Principle in Control Problems). (Nauka, Moscow, 1985).

    MATH  Google Scholar 

  10. Kan, Yu.S.Application of the Quantile Optimization to Bond Portfolio Selection, in Stochastic Optimization Techniques. Numerical Methods and Technical Applications, Lecture Notes in Economics and Mathematical Systems, vol. 513, Marti, K., Ed., Berlin: Springer, 2002, pp. 145–153.

  11. Meyer, M. and Reisner, S.Characterizations of Affinely-rotation-invariant Log-concave Measures by Section-centroid Location, in Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1989–1990, vol. 1469, Berlin: Springer, 1991, pp. 145–152.

  12. Vasil’eva, S. N. & Kan, Yu. S. A Method for Solving Quantile Optimization Problems with a Bilinear Loss Function. Autom. Remote Control 76(no. 9), 1582–1597 (2015).

    Article  MathSciNet  Google Scholar 

  13. Vasil’eva, S. N. & Kan, Yu. S. Visualization Algorithm for a Flat Kernel of a Probabilistic Measure. Informat. Primen. 12(no. 2), 60–68 (2018).

    Google Scholar 

  14. Krotov, V. F. Methods for the Solution of Variational Problems Using Sufficient Conditions for an Absolute Minimum. I. Autom. Remote Control 23(no. 12), 1473–1484 (1962).

    MATH  Google Scholar 

  15. Gurman, V. I. & Khrustalev, M. M. Abnormality in the Theory of Necessary Optimality Conditions. Izv. Irkutsk. Gos. Univ., Ser. Mat. 19, 44–61 (2017).

    MathSciNet  MATH  Google Scholar 

  16. Khrustalev, M. M. On Sufficient Optimality Conditions in the Problems with Phase Coordinates Constraints. Autom. Remote Control no. 4, 544–554 (1967).

    MATH  Google Scholar 

  17. Rosenblatt-Roth, M. Quantiles and Medians. Ann. Math. Stat. 36, 921–925 (1965).

    Article  MathSciNet  Google Scholar 

  18. Vasil’eva, S. N. & Kan, Yu. S. Approximation of Probabilistic Constraints in Stochastic Programming Problems with a Probability Measure Kernel. Autom. Remote Control 80(no. 11), 2005–2016 (2019).

    Article  MathSciNet  Google Scholar 

  19. Fedorov, V. V. Chislennye metody maksimina (Numerical Maximin Methods). (Nauka, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Kan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, Y. An Extension of the Quantile Optimization Problem with a Loss Function Linear in Random Parameters. Autom Remote Control 81, 2194–2205 (2020). https://doi.org/10.1134/S0005117920120048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920120048

Keywords

Navigation