Skip to main content

Advertisement

Log in

Improving the thermoelectric properties of graphene through zigzag graphene–graphyne nanoribbon heterostructures

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Thermoelectric materials can convert thermal energy and electrical energy into each other, which have attracted extensive attention in recent years. In this paper, we systematically investigate the ballistic thermoelectric performance of four zigzag graphene–graphyne nanoribbon heterostructures M\(i(i=1{-}4)\) through utilizing non-equilibrium Green’s function method. Our results show that heterostructures possess superior thermoelectric properties with respect to pristine graphene nanoribbon. Especially, the ZT value of M4 reaches 1.5 at 700 K, which is about 15 times that of graphene. Such improvement mainly originates from the reduction of phononic and electronic thermal conductance and the increase of Seebeck coefficient. Meanwhile, because M4 has the lowest phonon thermal conductance and favorable thermal power, its thermoelectric figure of merit is the best. These findings in this paper demonstrate that heterostructure is a viable approach to optimize the thermoelectric performance of graphene, which provides useful guidance for the design and fabrication of nanoscale thermoelectric devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used to support the findings of this study are available from the corresponding author upon request.]

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. V. Barone, O. Hod, G.E. Scuseria, Nano Lett. 6, 2748 (2006)

    Article  ADS  Google Scholar 

  3. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  4. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  5. N.M.R. Peres, Rev. Mod. Phys. 82, 2673 (2010)

    Article  ADS  Google Scholar 

  6. B. Zhou, B. Zhou, X. Chen, W. Liao, G. Zhou, J. Phys.: Condens. Matter 27, 465301 (2015)

    ADS  Google Scholar 

  7. D. Prezzi, D. Varsano, A. Ruini, A. Marini, E. Molinari, Phys. Rev. B 77, 041404 (2008)

    Article  ADS  Google Scholar 

  8. H. Zhao, K. Min, N.R. Aluru, Nano Lett. 9, 3012 (2009)

    Article  ADS  Google Scholar 

  9. G. Liang, N. Neophytou, D.E. Nikonov, M.S. Lundstrom, IEEE T. Electron Dev. 54, 677 (2007)

    Article  ADS  Google Scholar 

  10. Y. Chen, T. Jayasekera, A. Calzolari, K.W. Kim, M. Buongiorno Nardelli, J. Phys.: Condens. Matter 22, 372202 (2010)

    Google Scholar 

  11. Y. Ouyang, J. Guo, Appl. Phys. Lett. 94, 263107 (2009)

    Article  ADS  Google Scholar 

  12. P. Dollfus, V. Hung Nguyen, J. Saint-Martin, J. Phys.: Condens. Matter 27, 133204 (2015)

    ADS  Google Scholar 

  13. K. Yang, Y. Chen, R. D’Agosta, Y. Xie, J. Zhong, A. Rubio, Phys. Rev. B 86, 045425 (2012)

    Article  ADS  Google Scholar 

  14. H. Sevinçli, C. Sevik, T. Çağın, G. Cuniberti, Sci. Rep. 3, 1228 (2013)

    Article  ADS  Google Scholar 

  15. H. Xiao, W. Cao, T. Ouyang, X. Xu, Y. Ding, J. Zhong, Appl. Phys. Lett. 112, 233107 (2018)

    Article  ADS  Google Scholar 

  16. J. Kang, J. Li, F. Wu, S.-S. Li, J.-B. Xia, J. Phys. Chem. C 115, 20466 (2011)

    Article  Google Scholar 

  17. Q. Peng, W. Ji, S. De, PCCP 14, 13385 (2012)

    Article  ADS  Google Scholar 

  18. D.A. Solis, D.D. Borges, C.F. Woellner, D.S. Galvão, ACS Appl. Mater. Interfaces 11, 2670 (2019)

    Article  Google Scholar 

  19. A.L. Ivanovskii, Prog. Solid State Chem. 41, 1 (2013)

    Article  Google Scholar 

  20. G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 46, 3256 (2010)

    Article  Google Scholar 

  21. T. Ouyang, Y. Chen, L.-M. Liu, Y. Xie, X. Wei, J. Zhong, Phys. Rev. B 85, 235436 (2012)

    Article  ADS  Google Scholar 

  22. H. Sevinçli, C. Sevik, Appl. Phys. Lett. 105, 223108 (2014)

    Article  ADS  Google Scholar 

  23. Z. Yang, Y.-L. Ji, G. Lan, L.-C. Xu, H. Wang, X. Liu, B. Xu, J. Phys. D: Appl. Phys. 49, 145102 (2016)

    Article  ADS  Google Scholar 

  24. C. Wang, T. Ouyang, Y. Chen, J. Zhong, Eur. Phys. J. B 88, 130 (2015)

    Article  ADS  Google Scholar 

  25. X. Cui, T. Ouyang, J. Li, C. He, C. Tang, J. Zhong, PCCP 20, 7173 (2018)

    Article  ADS  Google Scholar 

  26. W.-X. Zhou, K.-Q. Chen, Carbon 85, 24 (2015)

    Article  Google Scholar 

  27. B. Zhou, B. Zhou, G. Zhou, Solid State Commun. 298, 113646 (2019)

    Article  Google Scholar 

  28. X. Zhang, L.-D. Zhao, J. Materiomics 1, 92 (2015)

    Article  Google Scholar 

  29. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Adv. Mater. 29, 1605884 (2017)

    Article  Google Scholar 

  30. T. Gao et al., Nat. Commun. 6, 6835 (2015)

    Article  ADS  Google Scholar 

  31. Y. Gong et al., Nat. Mater. 13, 1135 (2014)

    Article  ADS  Google Scholar 

  32. Q. Li, M. Liu, Y. Zhang, Z. Liu, Small 12, 32 (2016)

    Article  Google Scholar 

  33. Y. Li, Z. Ma, X. Song, Z. Yang, L.-C. Xu, R. Liu, X. Li, X. Liu, D. Hu, Comput. Mater. Sci. 136, 1 (2017)

    Article  ADS  Google Scholar 

  34. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  35. X. Tan, H. Shao, T. Hu, G. Liu, J. Jiang, H. Jiang, Phys. Chem. Chem. Phys. 17, 22872 (2015)

    Article  Google Scholar 

  36. T.C. Li, S.-P. Lu, Phys. Rev. B 77, 085408 (2008)

    Article  ADS  Google Scholar 

  37. T. Ouyang, H. Xiao, Y. Xie, X. Wei, Y. Chen, J. Zhong, J. Appl. Phys. 114, 073710 (2013)

    Article  ADS  Google Scholar 

  38. Z. Liu, G. Yu, H. Yao, L. Liu, L. Jiang, Y. Zheng, New J. Phys. 14, 113007 (2012)

    Article  ADS  Google Scholar 

  39. Y. Xu, Z. Li, W. Duan, Small 10, 2182 (2014)

    Article  Google Scholar 

  40. M. Jonson, G.D. Mahan, Phys. Rev. B 21, 4223 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific Research Fund of Hunan Provincial Education Department (Grant no. 20A449) and Scientific research projects of Shaoyang science and Technology Bureau (Grant no. 2020GZ90).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Li, D. Improving the thermoelectric properties of graphene through zigzag graphene–graphyne nanoribbon heterostructures. Eur. Phys. J. B 94, 52 (2021). https://doi.org/10.1140/epjb/s10051-021-00062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00062-6

Navigation