Skip to main content
Log in

Stochastic model for drought analysis of the Colorado River Basin

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Extreme changes in weather across the globe are substantially responsible to incite calamities like drought. While we cannot control weather, it is a harsh reality that we cannot stop droughts. However, the consequent detriments can discerningly be reduced to a tolerable limit by developing long term rational planning. To attain this objective, probability models are imperative as they measure and analyze the variation in the random phenomena in an orderly way and help to collect useful information leading toward meaningful predictions. In this paper, an explicit distribution based on the convolution of stochastic variables is derived from the Bivariate Affine-Linear Exponential (BALE) distribution to model the interarrival time of drought. The proposed model follows the trend of the observed drought data of the Colorado Drainage Basin in the USA that provides the rationale for its reliable forecasting. The return periods are also estimated for the interarrival time of drought to obtain important inferences for future planning. Finally, some quantiles associated with this model are provided, which are useful to predict changes in the interarrival times of droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alley WM (1984) The Palmer Drought Severity Index: limitations and assumptions. J Appl Meteorol climatol 23:1100–1109

    Article  Google Scholar 

  • Anshuka A, van Ogtrop FF, Vervoort RW (2019) Drought forecasting through statistical models using standardized precipitation index: a systematic review and meta-regression analysis. Nat Hazards 97:955–977

    Article  Google Scholar 

  • Austin SH, David LN (2017) Modeling Summer Month Hydrological Drought Probabilities in the United States Using Antecedent Flow Conditions. J Am Water Resour Assoc (JAWRA) 53(5):1133–1146. https://doi.org/10.1111/1752-1688.12562

    Article  Google Scholar 

  • Blom G (1958) Statistical estimates and transformed beta-variables. Wiley, New York

    Google Scholar 

  • Bonaccorso B, Cancelliere A, Rossi G (2003) An analytical formulation of return period of drought severity. Stoch Enviro Res Risk Assess 17:157–174

    Article  Google Scholar 

  • Bras RL (1990) Hydrology: an introduction to hydrologic science. Addison-Wesley, Reading

    Google Scholar 

  • Chambers J, Cleveland W, Kleiner B, Tukey P (1983) Graphical methods for data analysis. Chapman and Hall, London

    Google Scholar 

  • Cheng KS, Hou JC, Liou JJ, Wu YC, Chiang JL (2010) Stochastic simulation of bivariate gamma distribution: a frequency-factor based approach. Stoch Environ Res Risk Assess 25(2):107–122

    Article  Google Scholar 

  • Douglas EM, Vogel RM, Kroll CN (2002) Impact of streamflow persistence on hydrologic design. J Hydrol Eng 7(3):220–227

    Article  Google Scholar 

  • Dupuis DJ (2010) Statistical modeling of the monthly Palmer Drought Severity Index. J Hydrol Eng 15(10):796–808

    Article  Google Scholar 

  • Foster LM, Bearup LA, Molotch NP, Brooks PD, Maxwell RM (2016) Energy budget increases reduce mean streamflow more than snow-rain transitions: using integrated modeling to isolate climate change impacts on Rocky Mountain hydrology. Environ Res Lett 11:1–10. https://doi.org/10.1088/1748-9326/11/4/044015

    Article  Google Scholar 

  • Guerrero-Salazar P, Yevjevich V (1975) Analysis of drought characteristics by the theory of runs. Hydrology Paper No.80, Colorado State University, Fort Collins.

  • Gupta RD, Kundu D (1999) Generalized exponential distribution. Aust N Z J Stat 41:173–188

    Article  Google Scholar 

  • Haan CT (1977) Statistical methods in hydrology. Lowa State University Press, Ames

    Google Scholar 

  • Hallack-Alegria M, Watkins DW Jr (2007) Annual and warm season drought Intensity-Duration-Frequency analysis for Sonora. M J Clim 20(9):1897–1909

    Article  Google Scholar 

  • Han P, Wang P, Tian M, Zhang S, Liu J, Zhu D (2013) Application of the ARIMA Models in Drought Forecasting Using the Standardized Precipitation Index. Comput Comput Technol Agric, VI 392:352–358

    Google Scholar 

  • Hao Z, Singh VP (2011) Bivariate drought analysis using entropy theory. Symposium on Data-Driven Approaches to drought 43, http://docs.lib.purdue.edu/ddad2011/43.

  • Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteor Soc 83:1149–1165

    Article  Google Scholar 

  • Henningsen A, Toomet O (2011) maxLik: A package for maximum likelihood estimation in R. Comput Stat 26:443–458

    Article  Google Scholar 

  • Jacobi J, Perrone D, Duncan LL, Hornberger G (2013) A tool for calculating the Palmer drought indices. Water Resour Res 49:6086–6089

    Article  Google Scholar 

  • Jain VK, Pandey RP, Jain MK, Byun H-R (2015) Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather Clim Extrem 8:1–11

    Article  Google Scholar 

  • Jamro S, Dars GH, Ansari K, Krakauer NY (2019) Spatio-temporal variability of drought in Pakistan using standardized precipitation evapotranspiration index. Appl Sci 9:4588

    Article  Google Scholar 

  • Jamro S, Channa FN, Dars GH, Ansari K, Krakauer NY (2020) Exploring the evolution of drought characteristics in balochistan. Pak Appl Sci 10:913

    Article  Google Scholar 

  • Liu X, Wang S, Zhou Y, Wang F, Li W, Liu W (2015) Regionalization and spatiotemporal variation of drought in china based on standardized precipitationevapotranspiration index (1961–2013). Adv Meteorol. https://doi.org/10.1155/2015/950262

    Article  Google Scholar 

  • Lloyd EH (1970) Return period in the presence of persistence. J Hydrol 10(3):202–215

    Google Scholar 

  • Loaiciga HA, Marino MA (1991) Recurrence interval of geophysical events. J Water Resour Plan Manage 117(3):367–382

    Article  Google Scholar 

  • Madadgar S, Moradkhani H (2013) A Bayesian Framework for Probabilistic Seasonal Drought Forecasting. J Hydrometeorol 14(6):1685–1705

    Article  Google Scholar 

  • Marshall AW, Olkin I (1967) A multivariate exponential distribution. J Am Stat Assoc 62:30–44

    Article  Google Scholar 

  • McCabe GJ, Wolock DM, Pederson GT, Woodhouse CA, McAfee S (2017) Evidence that Recent Warming is Reducing Upper Colorado River Flows. Earth Interactions, EI-D-17–0007.1 https://doi.org/10.1175/EI-D-17-0007.1.

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216

    Article  Google Scholar 

  • Mishra AK, Singh VP (2011) Drought modeling: a review. J Hydrol 403:157–175

    Article  Google Scholar 

  • Mohsin M, Pilz J, Spöck G, Ahsanullah M (2010) On some new bivariate pseudo-Gamma distribution. J Appl Stat Sci 18(2):239–250

    Google Scholar 

  • Mohsin M, Gebhardt A, Pilz J, Spöck G (2013) A new bivariate Gamma distribution generated from functional scale parameter with application to drought data. Stoch Env Res Risk Assess 27(5):1039–1054

    Article  Google Scholar 

  • Mohsin M, Kazianka H, Pilz J, Gebhardt A (2014) A new bivariate exponential distribution for modeling moderately negative dependence. Stat Methods Appl 23(1):123–148

    Article  Google Scholar 

  • Nadarajah S (2007) A bivariate gamma model for drought. Water Resour Res 43:W08501. https://doi.org/10.1029/2006WR005641

    Article  Google Scholar 

  • Nadarajah S (2008) The bivariate F distribution with application to drought data. Statistics 42(6):535–546

    Article  Google Scholar 

  • Nadarajah S (2009) A bivariate Pareto model for drought. Stoch Environ Res Risk Assess 23:811–822

    Article  Google Scholar 

  • Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and Series, vol 1. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Razmkhah H (2017) Comparing threshold level methods in development of stream flow drought severity-duration-frequency curves. Water Resour Manage 31:4045–4061

    Article  Google Scholar 

  • Regoli G (2009) A class of bivariate exponential distribution. J Multivar Anal 100:1261–1269

    Article  Google Scholar 

  • Sarhan AM, Balakrishnan N (2007) A new class of bivariate distributions and its mixture. J Multivar Anal 98:1508–1527

    Article  Google Scholar 

  • Shiau JT (2003) Return period of bivariate distributed hydrological events. Stoch Environ Res Risk Assess 17:42–57

    Article  Google Scholar 

  • Shiau J, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manage 127(1):30–40

    Article  Google Scholar 

  • Solander KC, Bennett KE, Middleton RS (2017) Shifts in historical streamflow extremes in the Colorado River Basin. J Hydrol: Reg Stud 12:363–377. https://doi.org/10.1016/j.ejrh.2017.05.004

    Article  Google Scholar 

  • Song S, Singh VP (2010) Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stoch Environ Res Risk Assess 24(5):783–805

    Article  Google Scholar 

  • Tian L, Quiring SM (2019) Spatial and temporal patterns of drought in Oklahoma (1901–2014). Int J Climatol 39:3365–3378

    Article  Google Scholar 

  • Tillman FD, Gangopadhyay S, Pruitt T (2020) Trends in recent historical and projected climate data for the Colorado River Basin and potential effects on groundwater availability: U.S. Geological Survey Scientific Investigations Report 2020–5107, 24 https://doi.org/10.3133/sir20205107.

  • U.S. Bureau of Reclamation, 2012: Colorado River basin water supply and demand, executive summary, 28 p.

  • Udall B, Overpeck J (2017) The 21st Century Colorado River Hot Drought and Implications for the Future. Accept Water Resour Res. https://doi.org/10.1002/2016WR019638

    Article  Google Scholar 

  • Vogel RM (1987) Reliability indices for water supply systems. J Water Resour Plan Manage 113(4):645–654

    Article  Google Scholar 

  • Wang L, Zhang X, Wang S, Salahou MK, Fang Y (2020) Analysis and application of drought characteristics based on theory of runs and copulas in Yunnan, Southwest China. Int J Environ Res Pub Health 17(13):4654

    Article  Google Scholar 

  • Woodhouse CA, Pederson GT, Morino K, McAfee SA, McCabe GJ (2016) Increasing influence of air temperature on upper Colorado River streamflow. Geophys Res Lett. https://doi.org/10.1002/2015GL067613

    Article  Google Scholar 

  • Yevjevich V (1967) An Objective approach to definitions and investigations of continental hydrologic drought. Hydrology paper No. 23, Colorado State University, Fort Collins.

  • Yu H, Qiang Z, Chong-Yu X, Juan D, Peng S, Pan H (2019) Modified Palmer drought severity index: model improvement and application. Environ Int 130:104951

    Article  Google Scholar 

  • Zhang S, Wu Y, Sivakumar B, Mu X, Zhao F, Sun P, Han J (2019) Climate change-induced drought evolution over the past 50 years in the southern Chinese Loess Plateau. Environ Model Software 122:104519. https://doi.org/10.1016/j.envsoft.2019.104519

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the reviewers for their valuable comments and suggestions which certainly helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mohsin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Case

Non-drought duration (months)

Drought duration (months)

1

15

10

2

12

3

3

3

10

4

5

39

5

8

16

6

4

9

7

48

10

8

3

2

9

17

10

10

14

5

11

26

28

12

31

6

13

19

4

14

3

5

15

53

6

16

5

11

17

8

2

18

2

7

19

2

21

20

7

16

21

2

3

22

21

17

23

20

12

24

4

6

25

4

7

26

7

7

27

24

8

28

8

5

29

2

19

30

6

3

31

2

7

32

5

26

33

4

10

34

16

15

35

8

16

36

7

25

37

5

2

38

14

16

39

16

4

40

2

3

41

31

8

42

17

11

43

7

9

44

5

15

45

5

5

46

8

6

47

5

11

48

71

19

49

4

18

50

3

3

51

9

5

52

19

9

53

13

3

54

2

6

55

23

2

56

2

4

57

6

59

58

14

8

59

8

9

60

3

9

61

7

15

62

10

25

63

13

7

64

9

2

65

2

6

66

3

20

67

9

18

Appendix 2

Proof 1

Using the transformations \(S = X + Y\) and \(W = \frac{X}{X + Y}\) in (3), the joint density of S and W becomes.

$$f\left( {s,w} \right) = \left( {\beta s + \gamma ws^{2} } \right)\exp \left( { - sw - \beta s + \beta sw - \gamma s^{2} w + \gamma s^{2} w^{2} } \right).$$
(8)

Using (8), the pdf of S can be written as

$$f_{S} \left( s \right) = \int\limits_{0}^{1} {\left( {\beta s + \gamma s^{2} w} \right)\exp \left( { - sw - \beta s + \beta sw - \gamma s^{2} w + \gamma s^{2} w^{2} } \right)} \,\,\,dw,$$

Using Mathematica and simplifying, we get (4).

To derive the moments of S, we need the following lemma:

Lemma 1

Prudnikov et al. (1986) [vol. 1, Eq. (2.3.6.9), p-324]. If \(a,b \in {\mathbb{R}},\,\,s > 0\,\) and \(\,|\arg \,c| < \pi ,\)

$$\int\limits_{0}^{\infty } {\frac{{x^{a - 1} }}{{\left( {c + x} \right)^{b} }}\exp \left( { - sx} \right)\,dx = \Gamma \left( a \right)\left( c \right)^{a - b} \Psi \left( {a,a + 1 - b;cs} \right)} ,$$

where \(\Psi \left( . \right)\) is Kummer’s (confluent hypergeometric) function of second kind which is given by

$$\Psi \left( {x,y;z} \right) = \frac{1}{\Gamma \left( x \right)}\int\limits_{0}^{\infty } {\exp \left( { - zt} \right)t^{x - 1} \left( {1 + t} \right)^{y - x - 1} \,\,dt.}$$

Now the product moment of the distribution proposed in (1) is obtained as:

$$E\left( {X^{p} Y^{q} } \right) = \alpha \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {x^{p} y^{q} \left( {\beta + \gamma x} \right)} } \exp \left( { - \alpha x - \beta y - \gamma xy} \right)\,\,dydx,\,\,\,\,\,\,\,p,q = 1,2,....$$
$$= \frac{{\alpha \,\Gamma \left( {q + 1} \right)}}{{\gamma^{q} }}\int\limits_{0}^{\infty } {\frac{{x^{{\left( {p + 1} \right) - 1}} \exp \left( { - \alpha x} \right)}}{{\left( {\frac{\beta }{\gamma } + x} \right)^{q} }}} \,\,\,\,\,\,\,dx.$$

Using Lemma 1 and further simplifying we arrive at

$$E\left( {X^{p} Y^{q} } \right) = \frac{{\alpha \,\beta^{p - q + 1} }}{{\gamma^{p + 1} }}\Gamma \left( {q + 1} \right)\Gamma \left( {p + 1} \right)\Psi \left( {p + 1,p - q + 2;\frac{\alpha \beta }{\gamma }} \right).$$
(9)

Putting \(\alpha = 1,\) we get from (9)

$$E\left( {X^{p} Y^{q} } \right) = \frac{{\beta^{p - q + 1} }}{{\gamma^{p + 1} }}\Gamma \left( {q + 1} \right)\Gamma \left( {p + 1} \right)\Psi \left( {p + 1,p - q + 2;\frac{\beta }{\gamma }} \right),\,{\text{for}}\,p > - 1\,\,{\text{and}}\,\,q > - 1.$$
(10)

Proof 2

The result follows by writing \(E\left( {S^{n} } \right) = E\left( {X + Y} \right)^{n} = \sum\limits_{k = 0}^{n} {\left( {\mathop {}\limits_{k}^{n} } \right)} E\left( {X^{k} Y^{n - k} } \right)\) and applying (10) to each expectation in the sum, we get the result stated in (5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsin, M., Pilz, J. Stochastic model for drought analysis of the Colorado River Basin. Stoch Environ Res Risk Assess 35, 1637–1648 (2021). https://doi.org/10.1007/s00477-021-01989-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-021-01989-z

Keywords

Navigation