Skip to main content

Advertisement

Log in

Microbial-derived antigens and metabolites in spondyloarthritis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Spondyloarthritis (SpA) is a group of chronic, immune-mediated, inflammatory diseases affecting the bone, synovium, and enthesis. Microbiome, the community of microorganisms that has co-evolved with human hosts, plays a pivotal role in human health and disease. This invisible “essential organ” supplies the host with a myriad of chemicals and molecules. In turn, microbial metabolites can serve as messengers for microbes to communicate with each other and in the cross-talk with host cells. Gut dysbiosis in SpA is associated with altered microbial metabolites, and an accumulated body of research has contributed to the understanding that changes in intestinal microbiota can modulate disease pathogenesis. We review the novel findings from human and animal studies to provide an overview of the contribution of individual microbial metabolites and antigens to SpA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Terenzi R, Monti S, Tesei G, Carli L (2018) One year in review 2017: spondyloarthritis. Clin Exp Rheumatol 36(1):1–14

    PubMed  Google Scholar 

  2. Smith JA, Colbert RA (2014) Review: the interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol 66(2):231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siebert S, Millar NL, McInnes IB (2019) Why did IL-23p19 inhibition fail in AS: a tale of tissues, trials or translation? Ann Rheum Dis 78(8):1015–1018

    Article  PubMed  Google Scholar 

  4. Salvucci E (2019) The human-microbiome superorganism and its modulation to restore health. Int J Food Sci Nutr 70(7):781–795

    Article  CAS  PubMed  Google Scholar 

  5. Wilkins LJ, Monga M, Miller AW (2019) Defining dysbiosis for a cluster of chronic diseases. Sci Rep 9(1):12918

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fragoulis GE, Liava C, Daoussis D, Akriviadis E, Garyfallos A, Dimitroulas T (2019) Inflammatory bowel diseases and spondyloarthropathies: from pathogenesis to treatment. World J Gastroenterol 25(18):2162–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klingberg E, Magnusson MK, Strid H, Deminger A, Ståhl A, Sundin J, Simrén M, Carlsten H, Öhman L, Forsblad-d’Elia H (2019) A distinct gut microbiota composition in patients with ankylosing spondylitis is associated with increased levels of fecal calprotectin. Arthritis Res Ther 21(1):248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H, Welling G, Seksik P, Dore J, Grame G, Tilsala-Timisjarvi A (2002) Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford) 41(12):1395–1401

    Article  CAS  Google Scholar 

  9. Kuberski TT et al (1983) Increased recovery of Klebsiella from the gastrointestinal tract of Reiter’s syndrome and ankylosing spondylitis patients. Rheumatol XXII(suppl_2):85–90

    Article  Google Scholar 

  10. Li M et al (2019) Altered bacterial-fungal interkingdom networks in the guts of ankylosing spondylitis patients. mSystems 4(2):e00176–e00118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, Marmon S, Neimann A, Brusca S, Patel T, Manasson J, Pamer EG, Littman DR, Abramson SB (2015) Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 67(1):128–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Manasson J, Shen N, Garcia Ferrer HR, Ubeda C, Iraheta I, Heguy A, von Feldt JM, Espinoza LR, Garcia Kutzbach A, Segal LN, Ogdie A, Clemente JC, Scher JU (2018) Gut microbiota perturbations in reactive arthritis and postinfectious spondyloarthritis. Arthritis Rheumatol 70(2):242–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanges M, Valente G, Rea M, Della Gatta R, de Franchis G, Sollazzo R, D'Arienzo A (2009) Probiotics in spondyloarthropathy associated with ulcerative colitis: a pilot study. Eur Rev Med Pharmacol Sci 13(3):233–234

    CAS  PubMed  Google Scholar 

  14. Yang L, Liu B, Zheng J, Huang J, Zhao Q, Liu J, Su Z, Wang M, Cui Z, Wang T, Zhang W, Li Q, Lu H (2019) Rifaximin alters intestinal microbiota and prevents progression of ankylosing spondylitis in mice. Front Cell Infect Microbiol 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rath HC, Wilson KH, Sartor RB (1999) Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 67(6):2969–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gill T, Asquith M, Brooks SR, Rosenbaum JT, Colbert RA (2018) Effects of HLA–B27 on gut microbiota in experimental spondyloarthritis implicate an ecological model of dysbiosis. Arthritis & Rheumatology 70(4):555–565

    Article  CAS  Google Scholar 

  17. Jadon DR (2018) Psoriatic arthritis and seronegative spondyloarthropathies. Med 46(4):237–242

    Article  Google Scholar 

  18. Chen B, Li J, He C, Li D, Tong W, Zou Y, Xu W (2017) Role of HLA-B27 in the pathogenesis of ankylosing spondylitis (Review). Mol Med Rep 15(4):1943–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheehan NJ (2004) The ramifications of HLA-B27. J R Soc Med 97(1):10–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akassou A, Bakri Y (2018) Does HLA-B27 status influence ankylosing spondylitis phenotype? Clin Med Insights Arthritis Musculoskelet Disord 11:1179544117751627

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell 63(5):1099–1112

    Article  CAS  PubMed  Google Scholar 

  22. Jadon DR, Sengupta R, Nightingale A, Lindsay M, Korendowych E, Robinson G, Jobling A, Shaddick G, Bi J, Winchester R, Giles JT, McHugh NJ (2017) Axial disease in psoriatic arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann Rheum Dis 76(4):701–707

    Article  PubMed  Google Scholar 

  23. van der Linden SM et al (1984) The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum 27(3):241–249

    Article  PubMed  Google Scholar 

  24. Cortes A et al (2013) Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 45(7):730–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. FitzGerald O, Haroon M, Giles JT, Winchester R (2015) Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther 17(1):115

    Article  PubMed  PubMed Central  Google Scholar 

  26. Busch R, Kollnberger S, Mellins ED (2019) HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol 15(6):364–381

    Article  PubMed  Google Scholar 

  27. Fujinami RS, von Herrath MG, Christen U, Whitton JL (2006) Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 19(1):80–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rashid T, Wilson C, Ebringer A (2013) The link between ankylosing spondylitis, Crohn’s disease, <i > Klebsiella</i>, and starch consumption. Clin Dev Immunol 2013:872632

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tiwana H, Wilson C, Walmsley RS, Wakefield AJ, Smith MSN, Cox NL, Hudson MJ, Ebringer A (1997) Antibody responses to gut bacteria in ankylosing spondylitis, rheumatoid arthritis, Crohn’s disease and ulcerative colitis. Rheumatol Int 17(1):11–16

    Article  CAS  PubMed  Google Scholar 

  30. Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X, Qiu G, Cao X, Weng X (2019) Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kollnberger S, Chan A, Sun MY, Ye Chen L, Wright C, di Gleria K, McMichael A, Bowness P (2007) Interaction of HLA-B27 homodimers with KIR3DL1 and KIR3DL2, unlike HLA-B27 heterotrimers, is independent of the sequence of bound peptide. Eur J Immunol 37(5):1313–1322

    Article  CAS  PubMed  Google Scholar 

  32. Ridley A, Hatano H, Wong-Baeza I, Shaw J, Matthews KK, al-Mossawi H, Ladell K, Price DA, Bowness P, Kollnberger S (2016) Activation-induced killer cell immunoglobulin-like receptor 3DL2 binding to HLA-B27 licenses pathogenic T cell differentiation in spondyloarthritis. Arthritis Rheumatol 68(4):901–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA (2009) HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 60(9):2633–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Svenungsson B (1995) Reactive arthritis. Int J STD AIDS 6(3):156–160

    Article  CAS  PubMed  Google Scholar 

  35. Banicioiu-Covei S, Vreju FA, Ciurea P (2015) Predictive factors for the evolution of reactive arthritis to ankylosing spondylitis. Curr Health Sci J 41(2):104–108

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pacheco-Tena C, Alvarado de la Barrera C, López-Vidal Y, Vázquez-Mellado J, Richaud-Patin Y, Amieva RI, Llorente L, Martínez A, Zúñiga J, Cifuentes-Alvarado M, Burgos-Vargas R (2001) Bacterial DNA in synovial fluid cells of patients with juvenile onset spondyloarthropathies. Rheumatol (Oxford) 40(8):920–927

    Article  CAS  Google Scholar 

  37. Granfors K, Jalkanen S, von Essen R, Lahesmaa-Rantala R, Isomäki O, Pekkola-Heino K, Merilahti-Palo R, Saario R, Isomäki H, Toivanen A (1989) Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N Engl J Med 320(4):216–221

    Article  CAS  PubMed  Google Scholar 

  38. Granfors K, Jalkanen S, Mäki-Ikola O, Lahesmaa-Rantala R, Saario R, Toivanen A, Lindberg AA, von Essen R, Isomaki H, Arnold WJ (1990) Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet 335(8691):685–688

    Article  CAS  PubMed  Google Scholar 

  39. Kaeley N, Kumar M, Bhardwaj BB, Nagasubramanyam V (2019) Shigella flexneri associated reactive arthritis - GI transmitted or sexually transmitted? J Family Med Prim Care 8(3):1250–1252

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar P, Khanna G, Batra S, Sharma VK, Rastogi S (2016) Chlamydia trachomatis elementary bodies in synovial fluid of patients with reactive arthritis and undifferentiated spondyloarthropathy in India. Int J Rheum Dis 19(5):506–511

    Article  CAS  PubMed  Google Scholar 

  41. Elwell C, Mirrashidi K, Engel J (2016) Chlamydia cell biology and pathogenesis. Nat Rev Microbiol 14(6):385–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saxena S, Aggarwal A, Misra R (2005) Outer membrane protein of salmonella is the major antigenic target in patients with salmonella induced reactive arthritis. J Rheumatol 32(1):86–92

    CAS  PubMed  Google Scholar 

  43. Mertz AK et al (1998) Characterization of the synovial T cell response to various recombinant Yersinia antigens in Yersinia enterocolitica-triggered reactive arthritis. Heat-shock protein 60 drives a major immune response. Arthritis Rheum 41(2):315–326

    Article  CAS  PubMed  Google Scholar 

  44. Thiel A, Wu P, Lauster R, Braun J, Radbruch A, Sieper J (2000) Analysis of the antigen-specific T cell response in reactive arthritis by flow cytometry. Arthritis Rheum 43(12):2834–2842

    Article  CAS  PubMed  Google Scholar 

  45. Chaurasia S, Shasany AK, Aggarwal A, Misra R (2016) Recombinant Salmonella typhimurium outer membrane protein A is recognized by synovial fluid CD8 cells and stimulates synovial fluid mononuclear cells to produce interleukin (IL)-17/IL-23 in patients with reactive arthritis and undifferentiated spondyloarthropathy. Clin Exp Immunol 185(2):210–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mäki-Ikola O, Lehtinen K, Granfors K, Vainionpää R, Toivanen P (1991) Bacterial antibodies in ankylosing spondylitis. Clin Exp Immunol 84(3):472–475

    PubMed  PubMed Central  Google Scholar 

  47. Dominguez-López ML et al (2002) IgG antibodies to enterobacteria 60 kDa heat shock proteins in the sera of HLA-B27 positive ankylosing spondylitis patients. Scand J Rheumatol 31(5):260–265

    Article  PubMed  Google Scholar 

  48. Zambrano-Zaragoza JF, de Jesus Duran-Avelar M, Rodriguez-Ocampo AN, Garcia-Latorre E, Burgos-Vargas R, Dominguez-Lopez ML, Pena-Virgen S, Vibanco-Perez N (2009) The 30-kDa band from Salmonella typhimurium: IgM, IgA and IgG antibody response in patients with ankylosing spondylitis. Rheumatol (Oxford) 48(7):748–754

    Article  CAS  Google Scholar 

  49. Durán-Avelar MJ, Vibanco-Pérez N, Rodríguez-Ocampo AN, Peña-Virgen S, Zambrano-Zaragoza JF (2013) Lymphoproliferative response to the 30-kDa protein and a crude lysate from Salmonella typhimurium in patients with ankylosing spondylitis. Scand J Rheumatol 42(3):232–234

    Article  PubMed  Google Scholar 

  50. Sahin N, Salli A, Enginar AU, Ugurlu H (2009) Reactive arthritis following tetanus vaccination: a case report. Mod Rheumatol 19(2):209–211

    Article  PubMed  Google Scholar 

  51. Logan D, McKee PJ (2006) Poststreptococcal reactive arthritis. J Am Podiatr Med Assoc 96(4):362–366

    Article  PubMed  Google Scholar 

  52. Chou YS, Horng CT, Huang HS, Hu SC, Chen JT, Tsai ML (2010) Reactive arthritis following Streptococcus viridans urinary tract infection. Ocul Immunol Inflamm 18(1):52–53

    Article  PubMed  Google Scholar 

  53. Haapasalo K et al (2018) The psoriasis risk allele HLA-C*06:02 shows evidence of association with chronic or recurrent streptococcal tonsillitis. Infect Immun 86(10)

  54. Sigurdardottir SL, Thorleifsdottir RH, Valdimarsson H, Johnston A (2013) The association of sore throat and psoriasis might be explained by histologically distinctive tonsils and increased expression of skin-homing molecules by tonsil T cells. Clin Exp Immunol 174(1):139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dagan A, Dahan S, Shemer A, Langevitz P, Hellou T, Davidson T, Shoenfeld Y, Shovman O (2019) Acute onset of psoriatic spondyloarthritis as a new manifestation of post-streptococcal reactive arthritis: a case series. Clin Rheumatol 38(9):2367–2372

    Article  PubMed  Google Scholar 

  56. Muto M, Fujikura Y, Hamamoto Y, Ichimiya M, Ohmura A, Sasazuki T, Fukumoto T, Asagami C (1996) Immune response to Streptococcus pyogenes and the susceptibility to psoriasis. Australas J Dermatol 37(Suppl 1):S54–S55

    Article  PubMed  Google Scholar 

  57. Muto M, Date Y, Ichimiya M, Moriwaki Y, Mori K, Kamikawaji N, Kimura A, Sasazuki T, Asagami C (1996) Significance of antibodies to streptococcal M protein in psoriatic arthritis and their association with HLA-A*0207. Tissue Antigens 48(6):645–650

    Article  CAS  PubMed  Google Scholar 

  58. Carrasco S, Neves FS, Fonseca MH, Gonçalves CR, Saad CG, Sampaio-Barros PD, Goldenstein-Schainberg C (2011) Toll-like receptor (TLR) 2 is upregulated on peripheral blood monocytes of patients with psoriatic arthritis: a role for a gram-positive inflammatory trigger? Clin Exp Rheumatol 29(6):958–962

    PubMed  Google Scholar 

  59. Candia L et al (2007) Toll-like receptor-2 expression is upregulated in antigen-presenting cells from patients with psoriatic arthritis: a pathogenic role for innate immunity? J Rheumatol 34(2):374

    CAS  PubMed  Google Scholar 

  60. Yang X, Xie L, Li Y, Wei C (2009) More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS One 4(6):e6074

    Article  PubMed  PubMed Central  Google Scholar 

  61. Joice R, Yasuda K, Shafquat A, Morgan XC, Huttenhower C (2014) Determining microbial products and identifying molecular targets in the human microbiome. Cell Metab 20(5):731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roager HM, Dragsted LO (2019) Diet-derived microbial metabolites in health and disease. Nutr Bull 44(3):216–227

    Article  Google Scholar 

  63. Kaur, A., Alterations in the amounts of microbial metabolites in different regions of the mouse large intestine using variably fermentable fibres. Bioact carbohydr Diet Fibre, 2018. v. 13: p. pp. 7-13-2018 v.13.

  64. Fardina Malik, J.M., Alberto Herrera, Malavika Attur, Soumya M. Reddy, Lu Yang, Sergei Koralov and Jose U. Scher, Effects of fatty acid supplementation in modulation of gut microbiome and T-regulatory cells in health and psoriatic disease, in American College of Rheumatology. 2018.

  65. Asquith M, Davin S, Stauffer P, Michell C, Janowitz C, Lin P, Ensign-Lewis J, Kinchen JM, Koop DR, Rosenbaum JT (2017) Intestinal metabolites are profoundly altered in the context of HLA-B27 expression and functionally modulate disease in a rat model of spondyloarthritis. Arthritis Rheumatol 69(10):1984–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573

    Article  CAS  PubMed  Google Scholar 

  67. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen G, Ran X, Li B, Li Y, He D, Huang B, Fu S, Liu J, Wang W (2018) Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMed 30:317–325

    Article  Google Scholar 

  69. Chen L, Sun M, Wu W, Yang W, Huang X, Xiao Y, Ma C, Xu L, Yao S, Liu Z, Cong Y (2019) Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflamm Bowel Dis 25(9):1450–1461

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nastasi C, Fredholm S, Willerslev-Olsen A, Hansen M, Bonefeld CM, Geisler C, Andersen MH, Ødum N, Woetmann A (2017) Butyrate and propionate inhibit antigen-specific CD8(+) T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci Rep 7(1):14516

    Article  PubMed  PubMed Central  Google Scholar 

  71. Qiu J et al (2019) Acetate promotes T cell effector function during glucose restriction. Cell Rep 27(7):2063–2074.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ulven T (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol (Lausanne) 3:111

    Article  Google Scholar 

  73. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450

    Article  CAS  PubMed  Google Scholar 

  74. Briot K, Roux C (2015) Inflammation, bone loss and fracture risk in spondyloarthritis. RMD Open 1(1):e000052

    Article  PubMed  PubMed Central  Google Scholar 

  75. Frediani B, Allegri A, Falsetti P, Storri L, Bisogno S, Baldi F, Filipponi P, Marcolongo R (2001) Bone mineral density in patients with psoriatic arthritis. J Rheumatol 28(1):138–143

    CAS  PubMed  Google Scholar 

  76. Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B, Krönke G, Herrmann M, Mougiakakos D, Strowig T, Schett G, Zaiss MM (2018) Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 9(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yang L, Fanok MH, Mediero-Munoz A, Fogli LK, Corciulo C, Abdollahi S, Cronstein BN, Scher JU, Koralov SB (2018) Augmented Th17 differentiation leads to cutaneous and synovio-entheseal inflammation in a novel model of psoriatic arthritis. Arthritis Rheumatol 70(6):855–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tyagi AM et al (2018) The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immun 49(6):1116–1131.e7

    Article  CAS  Google Scholar 

  79. Stoll ML, Kumar R, Lefkowitz EJ, Cron RQ, Morrow CD, Barnes S (2016) Fecal metabolomics in pediatric spondyloarthritis implicate decreased metabolic diversity and altered tryptophan metabolism as pathogenic factors. Genes Immun 17(7):400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Senna MK, Olama SM, El-Arman M (2012) Serum melatonin level in ankylosing spondylitis: is it increased in active disease? Rheumatol Int 32(11):3429–3433

    Article  CAS  PubMed  Google Scholar 

  81. Klavdianou K, Liossis SN, Papachristou DJ, Theocharis G, Sirinian C, Kottorou A, Filippopoulou A, Andonopoulos AP, Daoussis D (2016) Decreased serotonin levels and serotonin-mediated osteoblastic inhibitory signaling in patients with ankylosing spondylitis. J Bone Miner Res 31(3):630–639

    Article  CAS  PubMed  Google Scholar 

  82. Aylward M, Maddock J (1974) Plasma l-tryptophan concentrations in chronic rheumatic diseases and the effects of some antirheumatic drugs on the binding of the amino-acid to plasma proteins in vivo and in vitro*. Rheumatol 13(2):62–74

    Article  CAS  Google Scholar 

  83. Bertazzo A et al (1999) Tryptophan catabolism in synovial fluid of various arthropathies and its relationship with inflammatory cytokines. Adv Exp Med Biol 467:565–570

    Article  CAS  PubMed  Google Scholar 

  84. Auckland G (1969) Psoriasis and arthritis: treatment with low tryptophan diet. Br J Dermatol 81(5):388–389

    CAS  PubMed  Google Scholar 

  85. Mellor AL, Munn DH (2003) Tryptophan catabolism and regulation of adaptive immunity. J Immunol 170(12):5809–5813

    Article  CAS  PubMed  Google Scholar 

  86. Sorgdrager FJH, Naudé PJW, Kema IP, Nollen EA, Deyn PPD (2019) Tryptophan metabolism in inflammaging: from biomarker to therapeutic target. Front Immunol 10:2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Coras R, Kavanaugh A, Boyd T, Huynh D, Lagerborg KA, Xu YJ, Rosenthal SB, Jain M, Guma M (2019) Choline metabolite, trimethylamine N-oxide (TMAO), is associated with inflammation in psoriatic arthritis. Clin Exp Rheumatol 37(3):481–484

    PubMed  PubMed Central  Google Scholar 

  88. Ierardi E, Sorrentino C, Principi M, Giorgio F, Losurdo G, di Leo A (2015) Intestinal microbial metabolism of phosphatidylcholine: a novel insight in the cardiovascular risk scenario. Hepatobiliary Surg Nutr 4(4):289–292

    PubMed  PubMed Central  Google Scholar 

  89. Wu K, Yuan Y, Yu H, Dai X, Wang S, Sun Z, Wang F, Fei H, Lin Q, Jiang H, Chen T (2020) Gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood 136:501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sitaraman R (2013) Phospholipid catabolism by gut microbiota and the risk of cardiovascular disease. J Med Microbiol 62(6):948–950

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tofalo R, Cocchi S, Suzzi G (2019) Polyamines and gut microbiota. Front Nutr 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang, C., et al., Metabolic and epigenomic regulation of Th17/Treg balance by the polyamine pathway. bioRxiv, 2020: p. 2020.01.23.911966.

  93. Lou F, Sun Y, Xu Z, Niu L, Wang Z, Deng S, Liu Z, Zhou H, Bai J, Yin Q, Cai X, Sun L, Wang H, Li Q, Wu Z, Chen X, Gu J, Shi YL, Tao W, Ginhoux F, Wang H (2020) Excessive polyamine generation in keratinocytes promotes self-RNA sensing by dendritic cells in psoriasis. Immun 53:204–216.e10

    Article  CAS  Google Scholar 

  94. Scher JU, Ogdie A, Merola JF, Ritchlin C (2019) Preventing psoriatic arthritis: focusing on patients with psoriasis at increased risk of transition. Nat Rev Rheumatol 15(3):153–166

    Article  PubMed  Google Scholar 

  95. Liu B, Jiang X, Cai L, Zhao X, Dai Z, Wu G, Li X (2019) Putrescine mitigates intestinal atrophy through suppressing inflammatory response in weanling piglets. J Animal Sci Biotechnol 10(1):69

    Article  Google Scholar 

  96. Li G et al (2020) Spermidine suppresses inflammatory DC function by activating the FOXO3 pathway and counteracts autoimmunity. iSci 23(1):100807

    Article  CAS  Google Scholar 

Download references

Funding

Work in the Koralov and Scher laboratories was supported by joint grants from the Judith and Stewart Colton Center for Autoimmunity and NPF Psoriatic Arthritis Diagnostic Test Grant. Research in the Koralov laboratory is further supported by NIH R01HL125816, funding from Drs. Martin and Dorothy Spatz Foundation, LEO Foundation (LF-OC-20-000351), and the Irma T. Hirschl and Monique Weill-Caulier Trust. Work in the Chang Lab is supported by NIH R01AR070131 and R01AR073851 grants. Research in the Scher laboratory is further supported by NIH/NIAMS R01AR074500, the Snyder Family Foundation, and the Riley Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose U. Scher or Sergei B. Koralov.

Ethics declarations

Conflict of interest

Drs. Scher and Koralov are co-authors on US Patent 10,226,443 “Methods for treating psoriatic arthritis.” The other authors declare no competing interests.

Additional information

This article is a contribution to the Special issue on: Spondyloarthritis - Guest Editors: Robert Inman & Nigil Haroon

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K.L., Lejeune, A., Chang, G. et al. Microbial-derived antigens and metabolites in spondyloarthritis. Semin Immunopathol 43, 163–172 (2021). https://doi.org/10.1007/s00281-021-00844-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-021-00844-1

Keywords

Navigation