Skip to main content
Log in

A comparative study to analyze efficiencies of \((N+2)\)-qubit partially entangled states in real conditions from the perspective of N controllers

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We address the efficiencies of \((N+2)\)-qubit partially entangled states for the involvement of N controllers in a noisy environment from the perspective of controller’s authority and average fidelity of a controlled teleportation protocol. For this, we design a generalized circuit using single- and two-qubit gates and study different cases of two sets of partially entangled multiqubit states. The analysis shows that for a particular set of partially entangled \((N+2)\)-qubit states average fidelity is independent of the state parameter and measurements performed by \(N-1\) controllers in ideal conditions and measurements performed by \(N-1\) controllers in noisy conditions with or without applications of weak measurements and its reversal operations. The results thus facilitate the experimental setups to worry about less number of parameters in the protocol. We further compare the efficiencies of these states from a controller’s perspective to increase his/her authority in the protocol. In addition, we also analyze dense coding protocol with and without the involvement of controllers to demonstrate the usefulness of partially entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Steane, A.: Quantum computing. Rep. Progr. Phys. 61(2), 117 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247 (2000)

    Article  ADS  MATH  Google Scholar 

  8. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  9. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, bell’s inequalities and inseparability. Phys. Lett. A 222(1–2), 21–25 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997)

    Article  ADS  MATH  Google Scholar 

  11. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80(6), 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. Jennewein, T., Weihs, G., Pan, J.-W., Zeilinger, A.: Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88(1), 017903 (2001)

    Article  ADS  Google Scholar 

  14. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Communications: quantum teleportation across the danube. Nature 430(7002), 849 (2004)

    Article  ADS  Google Scholar 

  15. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with w states. Phys. Rev. A 74(6), 062320 (2006)

    Article  ADS  Google Scholar 

  16. Jung, E., Hwang, M.-R., Ju, Y.H., Kim, M.-S., Yoo, S.-K., Park, H.D.K., Son, J.-W., Tamaryan, S., Cha, S.-K.: Greenberger-Horne-Zeilinger versus w states: quantum teleportation through noisy channels. Phys. Rev. A 78(1), 012312 (2008)

    Article  ADS  Google Scholar 

  17. Kumar, A., Krishnan, M.S.: Quantum entanglement and teleportation using statistical correlations. J. Chem. Sci. 121(5), 767 (2009)

    Article  Google Scholar 

  18. Man, Z.-X., Xia, Y.-J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process. 11(6), 1911–1920 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Takesue, H., Dyer, S.D., Stevens, M.J., Verma, V., Mirin, R.P., Nam, S.W.: Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2(10), 832–835 (2015)

    Article  ADS  Google Scholar 

  20. Dias, J., Ralph, T.C.: Quantum repeaters using continuous-variable teleportation. Phys. Rev. A 95(2), 022312 (2017)

    Article  ADS  Google Scholar 

  21. Jeff Kimble, H.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    Article  Google Scholar 

  22. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362(6412), eaam9288 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Brassard, G., Braunstein, S.L., Cleve, R.: Teleportation as a quantum computation. Phys. D Nonlinear Phenomena 120(1), 43–47 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402(6760), 390–393 (1999)

    Article  ADS  Google Scholar 

  25. Li, X.-H., Ghose, S.: Control power in perfect controlled teleportation via partially entangled channels. Phys. Rev. A 90(5), 052305 (2014)

    Article  ADS  Google Scholar 

  26. Li, X.-H., Ghose, S.: Analysis of n-qubit perfect controlled teleportation schemes from the controller’s point of view. Phys. Rev. A 91(1), 012320 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74(8), 1259 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)

    Article  ADS  Google Scholar 

  29. Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54(4), 2651 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. Townsend, P.D.: Quantum cryptography on multiuser optical fibre networks. Nature 385(6611), 47–49 (1997)

    Article  ADS  Google Scholar 

  31. Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHz states. Quantum Inf. Process. 13(8), 1789–1811 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sangchul, O., Lee, S., Lee, H.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66(2), 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423(6938), 417 (2003)

    Article  ADS  Google Scholar 

  34. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  35. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum zeno effect. Phys. Rev. Lett. 100(9), 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    Article  ADS  Google Scholar 

  37. Xiao, X., Yao, Y., Zhong, W.-J., Li, Y.-L., Xie, Y.-M.: Enhancing teleportation of quantum fisher information by partial measurements. Phys. Rev. A 93(1), 012307 (2016)

    Article  ADS  Google Scholar 

  38. Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8(2), 117 (2012)

    Article  Google Scholar 

  39. Kim, Y.-S., Cho, Y.-W., Ra, Y.-S., Kim, Y.-H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17(14), 11978–11985 (2009)

    Article  ADS  Google Scholar 

  40. Preskill, J.: Quantum computing in NISQ era and beyond. arXiv preprint quant-ph/1801.00862v3 (2018)

  41. Kurucz, Z., Koniorczyk, M., Janszky, J.: Teleportation with partially entangled states. Fortschr. Phys. Prog. Phys. 49(10–11), 1019–1025 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Gao, T., Yan, F.-L., Li, Y.-C.: Optimal controlled teleportation. EPL (Europhys. Lett.) 84(5), 50001 (2008)

    Article  ADS  Google Scholar 

  43. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  44. Ghose, S., Sinclair, N., Debnath, S., Rungta, P., Stock, R.: Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. Lett. 102(25), 250404 (2009)

    Article  ADS  Google Scholar 

  45. Brunner, N., Gisin, N., Scarani, V.: Entanglement and non-locality are different resources. New J. Phys. 7(1), 88 (2005)

    Article  ADS  Google Scholar 

  46. Bai, Y.-K., Yang, D., Wang, Z.D.: Multipartite quantum correlation and entanglement in four-qubit pure states. Phys. Rev. A 76(2), 022336 (2007)

    Article  ADS  Google Scholar 

  47. Bai, Y.-K., Wang, Z.D.: Multipartite entanglement in four-qubit cluster-class states. Phys. Rev. A 77(3), 032313 (2008)

    Article  ADS  Google Scholar 

  48. Tessier, T.E.: Complementarity relations for multi-qubit systems. Found. Phys. Lett. 18(2), 107–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chang-shui, Yu., Song, H.: Multipartite entanglement measure. Phys. Rev. A 71(4), 042331 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  50. Chunfeng, W., Yeo, Y., Kwek, L.C., Oh, C.H.: Quantum nonlocality of four-qubit entangled states. Phys. Rev. A 75(3), 032332 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  51. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65(15), 1838 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46(9), 5375 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  53. Belinskiĭ, A.V., Klyshko, D.N.: Interference of light and bell’s theorem. Phys. Uspekhi 36(8), 653 (1993)

    Article  ADS  Google Scholar 

  54. Popescu, S.: Bells inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett. 72(6), 797 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  56. Hiroshima, T.: Optimal dense coding with mixed state entanglement. J. Phys. A Math. Gen. 34(35), 6907 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Ziman, M., Bužek, V.: Correlation-assisted quantum communication. Phys. Rev. A 67(4), 042321 (2003)

    Article  ADS  Google Scholar 

  58. Chuang, I., Nielsen, M.: Quantum Computation and Quantum Information. Cambridge University Press, New York, NY (2010)

    MATH  Google Scholar 

  59. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90(4), 042332 (2014)

    Article  ADS  Google Scholar 

  60. Ming-Liang, H.: Robustness of Greenberger–Horne–Zeilinger and w states for teleportation in external environments. Phys. Lett. A 375(5), 922–926 (2011)

    Article  ADS  Google Scholar 

  61. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81(4), 040103 (2010)

    Article  ADS  Google Scholar 

  62. Cheong, Y.W., Lee, S.-W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109(15), 150402 (2012)

    Article  ADS  Google Scholar 

  63. Paraoanu, G.S.: Interaction-free measurements with superconducting qubits. Phys. Rev. Lett. 97(18), 180406 (2006)

    Article  ADS  Google Scholar 

  64. Franco, R.L., Bellomo, B., Andersson, E., Compagno, G.: Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85(3), 032318 (2012)

    Article  ADS  Google Scholar 

  65. Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101(20), 200401 (2008)

    Article  ADS  Google Scholar 

  66. Paraoanu, G.S.: Extraction of information from a single quantum. Phys. Rev. A 83(4), 044101 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  67. Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19(17), 16309–16316 (2011)

    Article  ADS  Google Scholar 

  68. Mn, M., Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97(16), 166805 (2006)

    Article  ADS  Google Scholar 

  69. Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80(3), 033838 (2009)

    Article  ADS  Google Scholar 

  70. Xiao, X., Li, Y.-L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67(10), 204 (2013)

    Article  ADS  Google Scholar 

  71. Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82(5), 052323 (2010)

    Article  ADS  Google Scholar 

  72. Xiao-Ye, X., Kedem, Y., Sun, K., Vaidman, L., Li, C.-F., Guo, G.-C.: Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111(3), 033604 (2013)

    Article  ADS  Google Scholar 

  73. Katz, N., Ansmann, M., Bialczak, R.C., Lucero, E., McDermott, R., Neeley, M., Steffen, M., Weig, E.M., Cleland, A.N., Martinis, J.M., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312(5779), 1498–1500 (2006)

    Article  ADS  Google Scholar 

  74. Groen, J.P., Ristè, D., Tornberg, L., Cramer, J., De Groot, P.C., Picot, T., Johansson, G., DiCarlo, L.: Partial-measurement backaction and nonclassical weak values in a superconducting circuit. Phys. Rev. Lett. 111(9), 090506 (2013)

    Article  ADS  Google Scholar 

  75. Guan, S.-Y., Jin, Z., He-Jin, W., Zhu, A.-D., Wang, H.-F., Zhang, S.: Restoration of three-qubit entanglements and protection of tripartite quantum state sharing over noisy channels via environment-assisted measurement and reversal weak measurement. Quantum Inf. Process. 16(5), 137 (2017)

    Article  ADS  MATH  Google Scholar 

  76. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377(44), 3209–3215 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Singh, P., Kumar, A.: Analysing nonlocality robustness in multiqubit systems under noisy conditions and weak measurements. Quantum Inf. Process. 17(9), 249 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Singh, P., Kumar, A.: Analysing nonlocal correlations in three-qubit partially entangled states under real conditions. Int. J. Theor. Phys. 57(10), 3172–3189 (2018)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge IIT Jodhpur, MHRD and SERB (S/SERB/AKR/20180034) for providing the required infrastructure and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

A1 \(\mathbf {GGHZ}\) states as quantum channels with three and four controllers

The following circuit diagrams represent controlled teleportation using GGHZ states as quantum channels for N controllers as given in Fig. 2. Figures 16 and 17 show the circuit diagrams in case of three and four controllers, respectively.

Fig. 16
figure 16

A quantum circuit for controlled teleportation using the five-qubit GGHZ state as a quantum channel with three controllers

Fig. 17
figure 17

A quantum circuit for controlled teleportation using the six-qubit GGHZ state as a quantum channel with four controllers

A2 \({|{\Phi }\rangle }\) states as quantum channels with two, three and four controllers

The following circuit diagrams in Figs. 18, 19 and 20 represent controlled teleportation using \({|{\Phi }\rangle }\) states as quantum channels in case of two, three and four controllers, respectively.

Fig. 18
figure 18

A quantum circuit for controlled teleportation using the four-qubit \({|{\Phi }\rangle }\) state as a quantum channel with two controllers

Fig. 19
figure 19

A quantum circuit for controlled teleportation using the five-qubit \({|{\Phi }\rangle }\) state as a quantum channel with three controllers

Fig. 20
figure 20

A quantum circuit for controlled teleportation using the six-qubit \({|{\Phi }\rangle }\) state as a quantum channel with four controllers

A3 \(\mathbf {GGHZ}\) states as quantum channels in noisy environment with weak measurement scheme

The average conditional fidelities of controlled teleportation protocol using GGHZ states as quantum channels in noisy environment with weak measurement scheme are given below, such that

(i) The average condition fidelity considering two controllers is

$$\begin{aligned} \mathrm{CF}_\mathrm{avg}=\dfrac{ 2 + 2d \bar{w} (3 + 4 d \bar{w} + 3 d^2 \bar{w}^2 + d^3 \bar{w}^3) \mathrm{Sin}^2\theta + \mathrm{Sin}2\theta \mathrm{Sin}2 \phi _1 \mathrm{Sin}2 \phi _2}{3 (\mathrm{Cos}^2\theta + (1 + d\bar{w})^4 \mathrm{Sin}^2\theta )}\nonumber \\ \end{aligned}$$
(A1)

where \(\bar{w}=1-w\).

(ii) The average condition fidelity considering three controllers is

$$\begin{aligned} \mathrm{CF}_\mathrm{avg}=\dfrac{2 + 2d \bar{w} (4 + 7 d \bar{w} + 7 d^2 \bar{w}^2 + 4 d^3 \bar{w}^3 + d^4 \bar{w}^4) \mathrm{Sin}^2\theta + \mathrm{Sin}2\theta \mathrm{Sin}2 \phi _1 \mathrm{Sin}2 \phi _2 \mathrm{Sin}2 \phi _3}{3 (\mathrm{Cos}^2\theta + (1 + d \bar{w})^5 \mathrm{Sin}^2\theta )}\nonumber \\ \end{aligned}$$
(A2)

(iii) The average condition fidelity considering four controllers is

$$\begin{aligned} \begin{aligned} \mathrm{CF}_\mathrm{avg}=\frac{{2 + 2d \bar{w} (5 + 11 d \bar{w} + 14 d^2 \bar{w}^2 + 11 d^3 \bar{w}^3 + 5 d^4 \bar{w}^4 + d^5 \bar{w}^5) \mathrm{Sin}^2\theta }{+\mathrm{Sin}2\theta \mathrm{Sin}2 \phi _1 \mathrm{Sin}2 \phi _2 \mathrm{Sin}2 \phi _3 \mathrm{Sin}2 \phi _4}}{3 (\mathrm{Cos}^2\theta + (1 + d \bar{w})^6 \mathrm{Sin}^2\theta )} \end{aligned}\nonumber \\ \end{aligned}$$
(A3)

A4 \({{|{{\varvec{\Phi }}}\rangle }}\) states as quantum channels in noisy environment with weak measurement scheme

The average conditional fidelities and controller’s powers of controlled teleportation protocol using \({|{\Phi }\rangle }\) states as quantum channels in noisy environment with weak measurement scheme are represented below, such that

(i) The average condition fidelity and controller’s power considering two controllers are

$$\begin{aligned} \mathrm{CF}_\mathrm{avg}=\frac{{3 (4 + 8 d \bar{w} + 7 d^2 \bar{w}^2 + 2 d^3 \bar{w}^3) - 3 d \bar{w} (4 + 5 d \bar{w} + 2 d^2 \bar{w}^2)\mathrm{Cos} 2 \theta }{- (2 - d \bar{w})^2 (3 + 2 d \bar{w})\mathrm{Cos}2 \phi _2 + d^2 \bar{w}^2 (-7 + 2 d \bar{w})\mathrm{Cos} 2 \theta \mathrm{Cos} 2 \phi _2}}{12 ((2 + 2 d \bar{w} + d^2 \bar{w}^2) Cos^2\theta +2 (1 + d\bar{w})^3 \mathrm{Sin}^2\theta )}\nonumber \\ \end{aligned}$$
(A4)

and

$$\begin{aligned} CP=\frac{{d \bar{w} (12 + d \bar{w} - 2 d^2 \bar{w}^2) - (12 + 8 d \bar{w} + 3 d^2 \bar{w}^2 - 2 d^3 \bar{w}^3)\mathrm{Cos} 2 \theta }{- (2 - d \bar{w})^2 (3 + 2 d \bar{w}) \mathrm{Cos} 2 \phi _2 + d^2 \bar{w}^2 (-7 + 2 d \bar{w})\mathrm{Cos} 2 \theta \mathrm{Cos} 2 \phi _2}}{12 ((2 + 2 d \bar{w} + d^2 \bar{w}^2)\mathrm{Cos}^2\theta +2 (1 + d\bar{w})^3 \mathrm{Sin}^2\theta )},\nonumber \\ \end{aligned}$$
(A5)

respectively.

(ii) The average condition fidelity and controller’s power considering three controllers are

and

respectively. (iii) The average condition fidelity and controller’s power considering four controllers are

and

respectively.

A5 Tables to illustrate the influence of each factor involved in the controlled teleportation protocol on average fidelity and controllers power

See Tables 2 and 3.

Table 2 \({|{\Phi }\rangle }\) states in noisy environment with weak measurement
Table 3 GGHZ states in noisy environment with weak measurement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faujdar, J., Kumar, A. A comparative study to analyze efficiencies of \((N+2)\)-qubit partially entangled states in real conditions from the perspective of N controllers. Quantum Inf Process 20, 64 (2021). https://doi.org/10.1007/s11128-021-02993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-02993-6

Keywords

Navigation