Skip to main content
Log in

A Thurston boundary for infinite-dimensional Teichmüller spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For a compact surface \(X_0\), Thurston introduced a compactification of its Teichmüller space \({\mathcal {T}}(X_0)\) by completing it with a boundary \(\mathcal {PML}(X_0)\) consisting of projective measured geodesic laminations. We introduce a similar bordification for the Teichmüller space \({\mathcal {T}}(X_0)\) of a noncompact Riemann surface \(X_0\), using the technical tool of geodesic currents. The lack of compactness requires the introduction of certain uniformity conditions which were unnecessary for compact surfaces. A technical step, providing a convergence result for earthquake paths in \({\mathcal {T}}(X_0)\), may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Lectures on Quasiconformal Mappings, volume 38 of University Lecture Series, 2nd edn. American Mathematical Society, Providence (2006). (With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard)

    Google Scholar 

  2. Beurling, A., Ahlfors, L.: The boundary correspondence under quasiconformal mappings. Acta Math. 96, 125–142 (1956)

    Article  MathSciNet  Google Scholar 

  3. Bers, L.: Automorphic forms and general Teichmüller spaces. In: Proceedings of Conference Complex Analysis (Minneapolis, 1964), pp. 109–113. Springer, Berlin (1965)

  4. Bonahon, F.: Bouts des variétés hyperboliques de dimension \(3\). Ann. Math. (2) 124(1), 71–158 (1986)

    Article  MathSciNet  Google Scholar 

  5. Bonahon, F.: The geometry of Teichmüller space via geodesic currents. Invent. Math. 92(1), 139–162 (1988)

    Article  MathSciNet  Google Scholar 

  6. Bonahon, F.: Geodesic currents on negatively curved groups. In: Arboreal group theory (Berkeley, CA, 1988), volume 19 of Math. Sci. Res. Inst. Publ., pp. 143–168. Springer, New York (1991)

  7. Bourbaki, N.: Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d’une mesure, Espaces \(L^{p}\). Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1175. Hermann, Paris, (1965). See also [8]

  8. Bourbaki, N.: Integration. I. Chapters 1–6. Elements of Mathematics (Berlin). Springer, Berlin (2004). (Translated from the 1959, 1965 and 1967 French originals by Sterling K. BerberianD)

    MATH  Google Scholar 

  9. Douady, A., Earle, C.J.: Conformally natural extension of homeomorphisms of the circle. Acta Math. 157(1–2), 23–48 (1986)

    Article  MathSciNet  Google Scholar 

  10. Epstein, D.B.A., Marden, A.: Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces. In: Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), volume 111 of London Math. Soc. Lecture Note Ser., pp. 113–253. Cambridge University Press, Cambridge (1987)

  11. Earle, C.J., McMullen, C.: Quasiconformal isotopies. In: Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), volume 10 of Math. Sci. Res. Inst. Publ., pp. 143–154. Springer, New York (1988)

  12. Epstein, D.B.A., Marden, A., Marković, V.: Complex earthquakes and deformations of the unit disk. J. Differ. Geom. 73(1), 119–166 (2006)

    Article  MathSciNet  Google Scholar 

  13. Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces, volume 66 of Astérisque. Société Mathématique de France, Paris (1979). See also [14]

  14. Fathi, A., Laudenbach, F., Poénaru, V.: Thurston’s Work on Surfaces, volume 48 of Mathematical Notes, vol. 48. Princeton University Press, Princeton (2012). (Translated from the 1979 French original [13] by Djun M. Kim and Dan Margalit)

    MATH  Google Scholar 

  15. Gardiner, F.P., Harvey, W.J.: Universal Teichmüller space. In: Handbook of Complex Analysis: Geometric Function Theory, vol. 1, pp. 457–492. North-Holland, Amsterdam (2002)

  16. Gardiner, F.P., Hu, J., Lakic, N.: Earthquake curves. In: Complex manifolds and hyperbolic geometry (Guanajuato, 2001), volume 311 of Contemp. Math., pp. 141–195. American Mathematical Society, Providence (2002)

  17. Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller Theory. Mathematical Surveys and Monographs, vol. 76. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  18. Hakobyan, H., Šarić, D.: Vertical limits of graph domains. Proc. Am. Math. Soc. 144(3), 1223–1234 (2016)

    Article  MathSciNet  Google Scholar 

  19. Hakobyan, H., Šarić, D.: Limits of Teichmüller geodesics in the universal Teichmüller space. Proc. Lond. Math. Soc. (3) 116(6), 1599–1628 (2018)

    Article  MathSciNet  Google Scholar 

  20. Hakobyan H., Šarić, D.: Visual sphere and Thurston’s boundary of the universal Teichmüller space. J. Anal. Math. arXiv:1505.07745 (2018) (To appear)

  21. Kerckhoff, S.P.: The Nielsen realization problem. Ann. Math. (2) 117(2), 235–265 (1983)

    Article  MathSciNet  Google Scholar 

  22. Lehto, O.E., Virtanen, K.I.: Quasiconformal mappings in the plane, 2nd edn. Springer, New York (1973). (Translated from the German by K, p. 126. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band)

    Book  Google Scholar 

  23. Miyachi, H., Šarić, D.: Uniform weak\(^*\) topology and earthquakes in the hyperbolic plane. Proc. Lond. Math. Soc. (3) 105(6), 1123–1148 (2012)

    Article  MathSciNet  Google Scholar 

  24. Miyachi, H., Šarić, D.: Convergence of Teichmüller deformations in the universal Teichmüller space. Proc. Am. Math. Soc. 147(11), 4877–4889 (2019)

    Article  Google Scholar 

  25. Otal, J.-P.: About the embedding of Teichmüller space in the space of geodesic Hölder distributions. In: Handbook of Teichmüller theory. Vol. I, volume 11 of IRMA Lect. Math. Theor. Phys., pp. 223–248. Eur. Math. Soc., Zürich (2007)

  26. Šarić, D.: Infinitesimal Liouville distributions for Teichmüller space. Proc. Lond. Math. Soc. (3) 88(2), 436–454 (2004)

    Article  Google Scholar 

  27. Šarić, D.: Geodesic currents and Teichmüller space. Topology 44(1), 99–130 (2005)

    Article  MathSciNet  Google Scholar 

  28. Šarić, D.: Real and complex earthquakes. Trans. Am. Math. Soc. 358(1), 233–249 (2006)

    Article  MathSciNet  Google Scholar 

  29. Šarić, D.: Bounded earthquakes. Proc. Am. Math. Soc. 136(3), 889–897 (2008)

    Article  MathSciNet  Google Scholar 

  30. Šarić, D.: Thurston’s boundary to infinite-dimensional teichmüller spaces: geodesic currents. preprint, arXiv:1505.01099 (2015)

  31. Šarić, D.: Thurston’s boundary for Teichmüller spaces of infinite surfaces: the length spectrum. Proc. Am. Math. Soc. 146(6), 2457–2471 (2018)

    Article  Google Scholar 

  32. Thurston, W.P.: The geometry and topology of \(3\)-manifolds. Princeton lecture notes, http://library.msri.org/books/gt3m/ (1978–81)

  33. Thurston, W.P.: Earthquakes in two-dimensional hyperbolic geometry. In: Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), volume 112 of London Math. Soc. Lecture Note Ser., pp 91–112. Cambridge University Press, Cambridge (1986)

  34. Thurston, W.P.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. (N.S.) 19(2), 417–431 (1988)

    Article  MathSciNet  Google Scholar 

  35. Tukia, P., Väisälä, J.: Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5(1), 97–114 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragomir Šarić.

Additional information

Communicated by F.C. Marques.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by the grants DMS-1102440, DMS-1406559 and DMS-1711297 from the US National Science Foundation, and by the collaboration grant 346391 from the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonahon, F., Šarić, D. A Thurston boundary for infinite-dimensional Teichmüller spaces. Math. Ann. 380, 1119–1167 (2021). https://doi.org/10.1007/s00208-021-02148-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02148-z

Navigation