Skip to main content
Log in

Homology of systemic modules

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper, we develop the rudiments of a tropical homology theory. We use the language of “triples” and “systems” to simultaneously treat structures from various approaches to tropical mathematics, including semirings, hyperfields, and super tropical algebra. We enrich the algebraic structures with a negation map where it does not exist naturally. We obtain an analogue to Schanuel’s lemma which allows us to talk about projective dimension of modules in this setting. We define two different versions of homology and exactness, and study their properties. We also prove a weak Snake lemma type result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a related weaker relation \(\nabla \), where \(a_1 \nabla a_2\) if and only if \(\mathbb {0}\preceq a_1 (-) a_2\), which also restricts to equality on \({\mathcal {T}}\). The relation \(\nabla \) is reflexive and symmetric, but not transitive. According to experience, \(\nabla \) has been more effective in linear algebra [2, 3], but \(\preceq \) serves better in developing representation theory, and features in [31] as well as this paper.

  2. In order not to get caught up in later complications, but not following the convention in [8, Definition 1.1], we adjoin a formal absorbing element \(\mathbb {0}\) to \({\mathcal {T}}\), i.e., \(a\mathbb {0}= \mathbb {0}a = \mathbb {0}\), for all \(a \in {\mathcal {T}}\).

  3. One could also require \(b^\circ = b\). This has categorical advantages seen in Sect. 6 but has algebraic drawbacks.

  4. This slightly strengthens the version of “uniquely negated,” for triples, used in [45], which says that there is a unique element b of \({\mathcal {T}}\) for which \( a+b \in \mathcal {A}^\circ .\)

  5. Note that this is just an equalizer of f.

  6. It might be more natural to use \(\preceq \) instead of \(\succeq \); for example, when \(f=0\) we would get \(b'(-)b \) a quasi-zero. But then we woulg lose the important Proposition 3.25.

  7. Even if we use the term \(\succeq \)-chain and \(\succeq \)-exact in this definition, all morphisms are assumed to be \(\preceq \)-morphisms unless otherwise stated.

  8. [23, § 1.3.1] calls this an “ideal” but we prefer to reserve this terminology for semirings.

  9. By this notation, we mean \(f+(-)f\). This makes sense since we assume that \({\text {Hom}}(A,B)\) is an additive semigroup. Alternatively, more in line with [11], one could take N to be \(\{ f: f = (-)f \}.\) This is more inclusive since \(f^\circ = (-) f^\circ .\) On the other hand when \((-)\) is the identity, \(f = (-)f\) always.

  10. See [11, Equation (22)]. This is a categorical version of the twist product defined for modules in Definition 2.36. For application to tropical geometry, see [30].

  11. In [23], this is called the kernel with respect to N.

  12. Once it exists, g as in the above diagram is unique. See [23, §1.5.5].

References

  1. Abuhlail, J.Y.S., Il’yin, S.N., Katsov, Y., Nam, T.G.: Toward homological characterization of semirings by e-injective semimodules. J. Algebra Appl. 17(4), 850059 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akian, M., Gaubert, S., Guterman, A.: Linear independence over tropical semirings and beyond. In: Litvinov, G.L., Sergeev, S.N. (eds.) Tropical and Idempotent Mathematics. Contemporary Mathematics, vol. 495, pp. 1–38. AMS, Providence, RI (2009)

    Chapter  MATH  Google Scholar 

  3. Akian, M., Gaubert, S., Rowen, L.: Linear algebra over systems, Preprint (2020)

  4. Akian, M., Gaubert, S., Rowen, L.: From systems to hyperfields and related examples, Preprint (2020)

  5. Baker, M., Bowler, N.: Matroids over partial hyperstructures. Adv. Math. 343, 821–863 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baker, M., Lorscheid, O.: The moduli space of matroids, arXiv:1809.03542 (2018)

  7. Barr, M., Wells, C.: Category theory for computing science. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Bourbaki, N.: Algebraic structures: algebra I: chapters 1–3. Springer, Berlin (1998)

    MATH  Google Scholar 

  9. Connes, A.: A noncommutative differential geometry. Publ. Math. IHES 62, 257–360 (1985)

    Article  MathSciNet  Google Scholar 

  10. Connes, A., Consani, C.: The hyperring of adèle classes. J. Number Theory 131(2), 159–194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Connes, A., Consani, C.: Homological algebra in characteristic one. High. Struct. J. 3(1), 155–247 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Costa, A.A.: Sur la thêorie générale des demi-anneaux. Publ. Math. Decebren 10, 14–29 (1963)

    MATH  Google Scholar 

  13. Deore, R.P., Pati, K.B.: On the dual basis of projective semimodules and its applications. Sarajevo J. Math. 1(14), 161–169 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Dress, A.: Duality theory for finite and infinite matroids with coefficients. Adv. Math. 93(2), 214–250 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dress, A., Wenzel, W.: Algebraic, tropical, and fuzzy geometry, Beitrage zur Algebra und Geometrie/ Contributions to Algebra und. Geometry 52(2), 431–461 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Texts in Mathematics, vol. 150. Springer, Berlin (1995)

  17. Flores, J.: Homological algebra for commutative monoids, arXiv:1503.02309 (2015)

  18. Gatto, L., Rowen, L.: Grassman semialgebras and the Cayley–Hamilton theorem, arXiv:1803.08093 (2018)

  19. Gaubert, S.: Théorie des systèmes linéaires dans les diodes. Thèse, École des Mines de Paris (1992)

  20. Gaubert, S., Plus, M.: Methods and applications of (max,+) linear algebra. In: STACS’ 97, number 1200 in LNCS, Lübeck, Springer (1997)

  21. Giansiracusa, J., Jun, J., Lorscheid, O.: On the relation between hyperrings and fuzzy rings. Beitr. Algebra Geom. (2017). https://doi.org/10.1007/s13366-017-0347-5

  22. Golan, J.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, vol. 54. Longman Sci & Tech, London (1992)

    MATH  Google Scholar 

  23. Grandis, M.: Homological Algebra: In Strongly Non-abelian Settings. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  24. Henry, S.: Symmetrization of monoïds as hypergroups, arXiv:1309.1963 (2013)

  25. Il’in, S.N., Katsov, Y., Nam, T.G.: Toward homological structure theory of semimodules: on semirings all of whose cyclic semimodules are projective. J. Algebra 476, 238–266 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Izhakian, Z.: Tropical arithmetic and matrix algebra. Commun. Algebra 37(4), 1445–1468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Izhakian, Z., Knebusch, M., Rowen, L.: Summand absorbing submodules of a module over a semiring. J. Pure Appl. Algebra 223(8), 3262–3294 (2019)

  28. Izhakian, Z., Knebusch, M., Rowen, L.: Decompositions of Modules lacking zero sums. Israel J. Math. 225(2), 503–524 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Izhakian, Z., Rowen, L.: Supertropical algebra. Adv. Math. 225(4), 2222–2286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Joó, D., Mincheva, K.: Prime congruences of idempotent semirings and a Nullstellensatz for tropical polynomials. Sel. Math. New Ser. 24, 2207–2233 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jun, J., Mincheva, K., Rowen, L.: Projective systemic modules, arXiv:1809.01996, JPAA, to appear (2018)

  32. Jun, J.: Algebraic geometry over hyperrings. Adv. Math. 323, 142–192 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jun, J.: Čech cohomology of semiring schemes. J. Algebra 483, 306–328 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jun, J., Rowen, L.: Categories with negation, arXiv:1709.0318 (2018)

  35. Karoubi, M.: Homologie cyclique. Astérisque 149 , Société Mathematique de France (1987)

  36. Katsov, Y.: Tensor products of functors. Siberian J. Math. 19, 222–229 (1978), trans. from Sirbiskii Mathematischekii Zhurnal 19(2), 318–327 (1978)

  37. Katsov, Y.: Tensor products and injective envelopes of semimodules over additively regular semirings. Algebra Colloq. 4(2), 121–131 (1997)

    MathSciNet  MATH  Google Scholar 

  38. Katsov, Y.: Toward homological characterization of semirings: Serre’s conjecture and Bass’ perfectness in a semiring context. Algebra Universalis 52, 197–214 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Katsov, Y., Nam, T.G.: Morita equivalence and homological characterization of semirings. J. Algebra Appl. 10(3), 445–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lorscheid, O.: The geometry of blueprints. Part I: algebraic background and scheme theory. Adv. Math. 229(3), 1804–1846 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lorscheid, O.: A Blueprinted View on \({\mathbb{F}}_1\)-Geometry, Absolute Arithmetic and \({\mathbb{F}}_1\)-Geometry (edited by Koen Thas). European Mathematical Society Publishing House, Zurich (2016)

    Google Scholar 

  42. Patchkoria, A.: On exactness of long sequences of homology semimodules. J. Homotopy Relat. Struct. 1(1), 229–243 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Rogalski, D.: An introduction to noncommutative projective algebraic geometry, arXiv:1403.3065 (2014)

  44. Rowen, L.H.: Ring Theory, Vol. I. Pure and Applied Mathematics, vol. 127. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  45. Rowen, L.H.: Algebras with a negation map, arXiv:1602.00353 (2017)

  46. Rowen, L.H.: An informal overview of triples and systems, arXiv:1709.03174 (2017)

  47. Semple, C., Whittle, G.: Partial fields and matroid representation. Adv. Appl. Math. 17(2), 184–208 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shapiro, J.: Relations between twisted derivations and twisted cyclic homology. Proc. Amer. Math. Soc. 140, 2647–2651 (2012)

Download references

Acknowledgements

J.J. was supported by an AMS-Simons travel grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalina Mincheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, J., Mincheva, K. & Rowen, L. Homology of systemic modules. manuscripta math. 167, 469–520 (2022). https://doi.org/10.1007/s00229-021-01272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01272-z

Mathematics Subject Classification

Navigation