Skip to main content

Advertisement

Log in

Studying Viral Populations with Tools from Quantum Spin Chains

  • Manuscript
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study Eigen’s model of quasi-species (Eigen in Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10):465, 1971), characterized by sequences that replicate with a specified fitness and mutate independently at single sites. The evolution of the population vector in time is then closely related to that of quantum spins in imaginary time. We employ multiple perspectives and tools from interacting quantum systems to examine growth and collapse of realistic viral populations, specifically considering excessive mutations in certain HIV proteins. All approaches used, including the simplest perturbation theory, give consistent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This simple mutation–selection model ignores several issues such as competition between different strains, and stochastic fluctuations. It thus assumes large populations unconstrained by resources.

References

  1. Abanin, D.A., Altman, E., Bloch, I., Serbyn, M.: Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91(2), 021001 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  2. Baake, E., Wagner, H.: Mutation-selection models solved exactly with methods of statistical mechanics. Genet. Res. 78(1), 93 (2001)

    Article  Google Scholar 

  3. Baake, E., Baake, M., Wagner, H.: Ising quantum chain is equivalent to a model of biological evolution. Phys. Rev. Lett. 78(3), 559 (1997)

    Article  ADS  Google Scholar 

  4. Baake, E., Baake, M., Wagner, H.: Quantum mechanics versus classical probability in biological evolution. Phys. Rev. E 57(1), 1191 (1998)

    Article  ADS  Google Scholar 

  5. Baldwin, C., Laumann, C., Pal, A., Scardicchio, A.: Clustering of nonergodic eigenstates in quantum spin glasses. Phys. Rev. Lett. 118(12), 127201 (2017)

    Article  ADS  Google Scholar 

  6. Bapst, V., Foini, L., Krzakala, F., Semerjian, G., Zamponi, F.: The quantum adiabatic algorithm applied to random optimization problems: the quantum spin glass perspective. Phys. Rep. 523(3), 127 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  7. Barton, J.P., Kardar, M., Chakraborty, A.K.: Scaling laws describe memories of host-pathogen riposte in the HIV population. Proc. Nat. Acad. Sci. 112(7), 1965 (2015)

    Article  ADS  Google Scholar 

  8. Barton, J.P., De Leonardis, E., Coucke, A., Cocco, S.: ACE: adaptive cluster expansion for maximum entropy graphical model inference. Bioinformatics 32(20), 3089 (2016)

    Article  Google Scholar 

  9. Bonhoeffer, S., Chappey, C., Parkin, N.T., Whitcomb, J.M., Petropoulos, C.J.: Evidence for positive epistasis in HIV-1. Science 306(5701), 1547 (2004)

    Article  ADS  Google Scholar 

  10. Chen, H., Kardar, M.: Selforganization of matter and the evolution of biological macromolecules. bioRxiv:518704 (2019)

  11. Cocco, S., Monasson, R.: Adaptive cluster expansion for inferring Boltzmann machines with noisy data. Phys. Rev. Lett. 106(9), 090601 (2011)

    Article  ADS  Google Scholar 

  12. Cocco, S., Feinauer, C., Figliuzzi, M., Monasson, R., Weigt, M.: Inverse statistical physics of protein sequences: a key issues review. Rep. Prog. Phys. 81(3), 032601 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  13. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10), 465 (1971)

    Article  ADS  Google Scholar 

  14. Ferguson, A.L., Mann, J.K., Omarjee, S., Ndung’u, T., Walker, B.D., Chakraborty, A.K.: Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design. Immunity 38(3), 606 (2013)

    Article  Google Scholar 

  15. Flynn, W.F., Haldane, A., Torbett, B.E., Levy, R.M.: Inference of epistatic effects leading to entrenchment and drug resistance in HIV-1 protease. Mol. Biol. Evol. 34(6), 1291 (2017)

    Article  Google Scholar 

  16. Galluccio, S.: Exact solution of the quasispecies model in a sharply peaked fitness landscape. Phys. Rev. E 56(4), 4526 (1997)

    Article  ADS  Google Scholar 

  17. Gerrish, P.J., Lenski, R.E.: The fate of competing beneficial mutations in an asexual population. Genetica 102, 127 (1998)

    Article  Google Scholar 

  18. Gupta, V., Dixit, N.M.: Scaling law characterizing the dynamics of the transition of HIV-1 to error catastrophe. Phys. Biol. 12(5), 054001 (2015)

    Article  ADS  Google Scholar 

  19. Haldane, J.B.S.: Mathematical Proceedings of the Cambridge Philosophical Society. In A mathematical theory of natural and artificial selection, part V: selection and mutation. Cambridge University Press, Cambridge, vol. 23, pp. 838–844 (1927)

  20. Hart, G.R., Ferguson, A.L.: Error catastrophe and phase transition in the empirical fitness landscape of HIV. Phys. Rev. E 91(3), 032705 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  21. Held, T., Klemmer, D., Lässig, M.: Survival of the simplest in microbial evolution. Nat. Commun. 10(1), 1 (2019)

    Article  Google Scholar 

  22. Hermisson, J., Wagner, H., Baake, M.: Four-state quantum chain as a model of sequence evolution. J. Stat. Phys. 102(1–2), 315 (2001)

    Article  MathSciNet  Google Scholar 

  23. Jörg, T., Krzakala, F., Kurchan, J., Maggs, A.: Simple glass models and their quantum annealing. Phys. Rev. Lett. 101(14), 147204 (2008)

    Article  ADS  Google Scholar 

  24. Leuthäusser, I.: Statistical mechanics of Eigen’s evolution model. J. Stat. Phys. 48(1–2), 343 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  25. Louie, R.H., Kaczorowski, K.J., Barton, J.P., Chakraborty, A.K., McKay, M.R.: Fitness landscape of the human immunodeficiency virus envelope protein that is targeted by antibodies. Proc. Natl. Acad. Sci. 115(4), E564 (2018)

    Article  Google Scholar 

  26. Mann, J.K., Barton, J.P., Ferguson, A.L., Omarjee, S., Walker, B.D., Chakraborty, A., Ndung’u, T.: The fitness landscape of HIV-1 gag: advanced modeling approaches and validation of model predictions by in vitro testing. PLoS Comput. Biol. 10, 8 (2014)

    Article  Google Scholar 

  27. Nandkishore, R., Huse, D.A.: Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015)

    Article  ADS  Google Scholar 

  28. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. b 82(17), 174411 (2010)

    Article  ADS  Google Scholar 

  29. Parera, M., Perez-Alvarez, N., Clotet, B., Martínez, M.A.: Epistasis among deleterious mutations in the HIV-1 protease. J. Mol. Biol. 392(2), 243 (2009)

    Article  Google Scholar 

  30. Rizzato, F., Coucke, A., de Leonardis, E., Barton, J.P., Tubiana, J., Monasson, R., Cocco, S.: Inference of compressed Potts graphical models. Phys. Rev. E 101(1), 012309 (2020)

    Article  ADS  Google Scholar 

  31. Rumschitzki, D.S.: Spectral properties of Eigen evolution matrices. J. Math. Biol. 24(6), 667 (1987)

    Article  MathSciNet  Google Scholar 

  32. Saakian, D., Hu, C.K.: Eigen model as a quantum spin chain: exact dynamics. Phys. Rev. E 69(2), 021913 (2004)

    Article  ADS  Google Scholar 

  33. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  34. Shekhar, K., Ruberman, C.F., Ferguson, A.L., Barton, J.P., Kardar, M., Chakraborty, A.K.: Spin models inferred from patient-derived viral sequence data faithfully describe HIV fitness landscapes. Phys. Rev. E 88(6), 062705 (2013)

    Article  ADS  Google Scholar 

  35. Simon, V., Bloch, N., Landau, N.R.: Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat. Immunol. 16(6), 546 (2015)

    Article  Google Scholar 

  36. Suzuki, S., Inoue, J.I., Chakrabarti, B.K.: Quantum Ising Phases and Transitions in Transverse Ising Models, vol. 862. Springer, New York (2012)

    MATH  Google Scholar 

  37. Wagner, H., Baake, E., Gerisch, T.: Ising quantum chain and sequence evolution. J. Stat. Phys. 92(5–6), 1017 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  38. Zhang, T.H., Dai, L., Barton, J.P., Du, Y., Tan, Y., Pang, W., Chakraborty, A.K., Lloyd-Smith, J.O., Sun, R.: Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease. PLOS Genet. (2020). https://doi.org/10.1371/journal.pgen.1009009

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Galileo Galilei Institute in Florence, Italy where a part of this work was performed. This research was performed while CLB held an NRC Research Associateship award at the National Institute of Standards and Technology. MK is supported by NSF through Grant No. DMR-1708280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumya Shivam.

Additional information

Communicated by Michael Lässig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivam, S., Baldwin, C.L., Barton, J. et al. Studying Viral Populations with Tools from Quantum Spin Chains. J Stat Phys 182, 38 (2021). https://doi.org/10.1007/s10955-021-02716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02716-2

Keywords

Navigation