Skip to main content
Log in

Effects of Physicochemical Properties of Different Base Oils on Friction Coefficient and Surface Roughness in MQL Milling AISI 1045

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Minimum quantity lubrication (MQL) is an emerging green and resource-saving machining technique jetting minute amount lubricants and gas after mixing and atomization. However, MQL development is restricted to mineral oils because of its undegradability and threat to the environment and human health. Vegetable oils can replace mineral oils as base oil for MQL benefitting from its biodegradability and renewable property. Nevertheless, the lubrication mechanism at the tool-workpiece interface of different vegetable oils with various physicochemical properties has not been revealed systematically. In order to verify the interfacial lubrication characteristics of different vegetable oils, MQL milling experiments of AISI 1045 based on five vegetable oils (cottonseed, palm, castor, soybean, and peanut oils) were carried out. The experimental results showed that, palm oil obtained the lowest milling force (Fx = 312 N, Fy = 156 N), friction coefficient (0.78), and surface roughness values (Ra = 0.431 μm, RSm = 0.252 mm) and the smoothest surface of workpiece. Furthermore, the physiochemical properties (composition, molecular structure, viscosity, surface tension, and contact angle) of vegetable oil were analyzed. Palm oil with high content of saturated fatty acid, high viscosity and small contact angle can form the lubricating oil film with the highest strength and the largest spreading area at the tool-workpiece interface. Therefore, palm oil can achieve the optimal lubrication effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

MQL:

Minimum quantity lubrication

SEM:

Scanning electron microscope

W s :

Rotation rate (r/min)

V f :

Feed rate (mm/min)

V:

Cutting speed

a p :

Axial depth of cut (mm)

a e :

Radial depth of cut (mm)

α :

Angle of the nozzle and the tool feeding direction

β :

Angle of nozzle and horizontal direction

γ :

Cut in angle

t :

Processing time

F x, F y, F z :

Cutting force component in the X, Y, and Z directions (N)

F t, F r :

Tangential and radial cutting force components (N)

F :

Resultant cutting force (N)

\(\overline{{F_{\max } }}\) :

Mean of milling force peak (N)

R a :

Arithmetic average height (μm)

RS m :

Mean spacing at mean line (mm)

R mr :

Bearing length ratio

μ :

Friction coefficient

μ n :

Viscosity of the nanofluid

μ bf :

Viscosity of the base fluid

φ :

Noparticle volume fraction

γ sv :

Surface tension at the solid–gas interface

γ s1 :

Surface tension at the solid–liquid interface

γ v1 :

Surface tension at the gas–liquid interface

\(\theta\) :

Contact angle

References

  1. Yin, Q. A., Li, C. H., Zhang, Y. B., Yang, M., Jia, D. Z., Hou, Y. L., et al. (2018). Spectral analysis and power spectral density evaluation in Al2O3 nanofluid minimum quantity lubrication milling of 45 steel. International Journal of Advanced Manufacturing Technology, 96, 129–145.

    Google Scholar 

  2. Yang, M., Li, C. H., Zhang, Y. B., Wang, Y. G., Li, B. K., Jia, D. Z., et al. (2017). Research on microscale skull grinding temperature field under different cooling conditions. Applied Thermal Engineering, 126, 525–537.

    Google Scholar 

  3. Yang, M., Li, C. H., Zhang, Y. B., Jia, D. Z., Zhang, X. P., Hou, Y. L., et al. (2017). Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. International Journal of Machine Tools and Manufacture, 122, 55–65.

    Google Scholar 

  4. Hamdan, A., Sarhan, A. A. D., & Hamdi, M. (2012). An optimization method of the machining parameters in high-speed machining of stainless steel using coated carbide tool for best surface finish. International Journal of Advanced Manufacturing Technology, 58, 81–91.

    Google Scholar 

  5. Jang, D., Jung, J., & Seok, J. (2016). Modeling and parameter optimization for cutting energy reduction in MQL milling process. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 5–12.

    Google Scholar 

  6. Mao, C., Zhou, X., Yin, L. R., Zhang, M. J., Tang, K., & Zhang, J. (2016). Investigation of the flow field for a double-outlet nozzle during minimum quantity lubrication grinding. International Journal of Advanced Manufacturing Technology, 85, 291–298.

    Google Scholar 

  7. Mao, C., Zou, H. F., Huang, X. M., Zhang, J. A., & Zhou, Z. X. (2013). The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication. International Journal of Advanced Manufacturing Technology, 64, 1791–1799.

    Google Scholar 

  8. Boswell, B., Islam, M. N., Davies, I. J., Ginting, Y. R., & Ong, A. K. (2017). A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. International Journal of Advanced Manufacturing Technology, 92(1–4), 321–340.

    Google Scholar 

  9. Tawakoli, T., Hadad, M. J., Sadeghi, M. H., Daneshi, A., Stöckert, S., & Rasifard, A. (2009). An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication-MQL grinding. International Journal of Machine Tools and Manufacture, 49, 924–932.

    Google Scholar 

  10. Li, C.H., Jia, D.Z., Yang, M., Zhang, Y.B., Dong, Lan., Hou, Y.L., (2013). Nanofluids electrostatic atomization controllable jet minimum quantity lubrication grinding system. Invention patents in China, CN 201310042095.9, 05,01.

  11. Davim, J. P., Sreejith, P. S., Gomes, R., & Peixoto, C. (2006). Experimental studies on drilling of aluminium (AA1050) under dry, minimum quantity of lubricant, and flood-lubricated conditions. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 220, 1605–1611.

    Google Scholar 

  12. Dong, L., Li, C. H., Bai, X. F., Zhai, M. G., Qi, Q., Yin, Q. A., et al. (2019). Analysis of the cooling performance of Ti-6Al-4V in minimum quantity lubricant milling with different nanoparticles. International Journal of Advanced Manufacturing Technology, 103, 2197–2206.

    Google Scholar 

  13. Yang, M., Li, C. H., Zhang, Y. B., Jia, D. Z., Li, R. Z., Hou, Y. L., et al. (2019). Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceramics International, 45, 14908–14920.

    Google Scholar 

  14. Mia, M., Gupta, M. K., Singh, G., Królczyk, G., & Pimenov, D. Y. (2018). An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. Journal of Cleaner Production, 187, 1069–1081.

    Google Scholar 

  15. Lv, H. G. (2012). Tool wear and its effect on surface integrity of H13 steel during hard milling. Shandong University, 2012, 11–77.

    Google Scholar 

  16. Silva, L. R., Bianchi, E. C., Fusse, R. Y., Cataic, R. E., França, T. V., & Aguiard, P. R. (2007). Analysis of surface integrity for minimum quantity lubricant-MQL in grinding. International Journal of Advanced Manufacturing Technology, 47, 412–418.

    Google Scholar 

  17. Liao, Y. S., & Lin, H. M. (2007). Mechanism of minimum quantity lubrication in high-speed milling of hardened steel. International Journal of Machine Tools and Manufacture, 47, 1660–1666.

    Google Scholar 

  18. Liao, Y. S., Lin, H. M., & Chen, Y. C. (2007). Feasibility study of the minimum quantity lubrication in high-speed end milling of NAK80 hardened steel by coated carbide tool. International Journal of Machine Tools and Manufacture, 47, 1667–1676.

    Google Scholar 

  19. Dhar, N. R., Kamruzzaman, M., & Ahmed, M. (2006). Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing Technology, 172, 299–304.

    Google Scholar 

  20. Shahrom, M. S., Yahya, N. M., & Yusoff, A. R. (2013). Taguchi method approach on effect of lubrication condition on surface roughness in milling operation. Procedia Engineering, 53(7), 594–599.

    Google Scholar 

  21. Kishawy, H. A., Dumitrescu, M., Ng, E. G., & Elbestawi, M. A. (2013). Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. International Journal of Machine Tools and Manufacture, 45(2), 219–227.

    Google Scholar 

  22. Zhang, Y. B., Li, C. H., Jia, D. Z., Zhang, D. K., & Zhang, X. W. (2015). Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. Journal of Cleaner Production, 871, 930–940.

    Google Scholar 

  23. Li, B. K., Li, C. H., Zhang, Y. B., Wang, Y. G., Jia, D. Z., & Yang, M. (2016). Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chinese Journal of Aeronautics, 29, 1084–1095.

    Google Scholar 

  24. Wang, Y. G., Li, C. H., Zhang, Y. B., Yang, M., Li, B. K., Jia, D. Z., et al. (2016). Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. Journal of Cleaner Production, 127, 487–499.

    Google Scholar 

  25. Guo, S. M., Li, C. H., Zhang, Y. B., Wang, Y. G., Li, B. K., Yang, M., et al. (2017). Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. Journal of Cleaner Production, 140, 1060–1076.

    Google Scholar 

  26. Emami, M., Sadeghi, M. H., Sarhan, A. A. D., & Hasani, F. (2014). Investigating the Minimum Quantity Lubrication in grinding of Al2O3 engineering ceramic. Journal of Cleaner Production, 66, 632–643.

    Google Scholar 

  27. Ueda, T., Hosokawa, A., & Yamada, K. (2006). Effect of oil mist on tool temperature in cutting. Journal of Manufacturing Science and Engineering, 128, 130–135.

    Google Scholar 

  28. Sultana, S., Zaman, P. B., & Dhar, N. R. (2009). Performance evaluation of different types of cutting fluid in MQL machining of alloy steel by coated carbide insert. Proceedings of 2009 Proceedings of the International Conference on Mechanical Engineering, 1–6.

  29. Khan, M. M. A., & Dhar, N. R. (2006). Performance evaluation of minimum quantity lubrication by vegetable oil in terms of cutting force, cutting zone temperature, tool wear, job dimension and surface finish in turning AISI-1060 steel. Journal of Zhejiang University-Science A, 7, 1790–1799.

    Google Scholar 

  30. Khan, M. M. A., Mithu, M. A. H., & Dhar, N. R. (2009). Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of Materials Processing Technology, 209(15–16), 5573–5583.

    Google Scholar 

  31. Rahim, E. A., & Sasahara, H. (2011). An analysis of surface integrity when drilling Inconel 718 using palm oil and synthetic ester under MQL condition. Machining Science and Technology, 15, 76–90.

    Google Scholar 

  32. Obikawa, T., Kamata, Y., & Shinozuka, J. (2006). High-speed grooving with applying MQL. International Journal of Machine Tools and Manufacture, 46, 1854–1861.

    Google Scholar 

  33. Araujo, A. S., Sales, W. F., Silva, R. B. D., Costa, E. S., & Machado, Á. R. (2017). Lubri-cooling and tribological behavior of vegetable oils during milling of AISI 1045 steel focusing on sustainable manufacturing. J Clean Prod, 156, 635–647.

    Google Scholar 

  34. Wang, Y. G., Li, C. H., Zhang, Y. B., Li, B. K., Yang, M., Zhang, X. P., et al. (2016). Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribology International, 99, 198–210.

    Google Scholar 

  35. Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. Journal of Cleaner Production, 127, 1–18.

    Google Scholar 

  36. Yin, Q. A., Li, C. H., Dong, L., Bai, X. F., Yang, M., Jia, D. Z., et al. (2018). Effects of the physicochemical properties of different nanoparticles on lubrication performance and experimental evaluation in the NMQL milling of Ti–6Al–4V. International Journal of Advanced Manufacturing Technology, 99, 3091–3109.

    Google Scholar 

  37. Xu, D. C., Feng, P. F., Li, W. B., Ma, Y., & Liu, B. (2014). Research on chip formation parameters of aluminum alloy 6061–T6 based on high-speed orthogonal cutting model. International Journal of Advanced Manufacturing Technology, 72(5–8), 955–962.

    Google Scholar 

  38. Dureja, J. S., Singh, R., Singh, T., Singh, P., Dogra, M., & Bhatti, M. S. (2015). Performance evaluation of coated carbide tool in machining of stainless steel (AISI 202) under minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 123–129.

    Google Scholar 

  39. Li, G. X., Rahim, M. Z., Ding, S. L., & Sun, S. J. (2016). Performance and wear analysis of polycrystalline diamond (PCD) tools manufactured with different methods in turning titanium alloy Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 85, 825–841.

    Google Scholar 

  40. Li, G. X., Yi, S., Sun, S. J., & Ding, S. L. (2017). Wear mechanisms and performance of abrasively ground polycrystalline diamond tools of different diamond grains in machining titanium alloy. Journal of Manufacturing Processes, 29, 320–331.

    Google Scholar 

  41. Sun, J., & Guo, Y. B. (2008). A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 48(12–13), 1486–1494.

    Google Scholar 

  42. Jia, D. Z., Li, C. H., Zhang, Y. B., Yang, M., Zhang, X. P., Li, R. Z., & Ji, H. J. (2019). Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. International Journal of Advanced Manufacturing Technology, 100(1–4), 457–473.

    Google Scholar 

  43. Velasquez, J. D. P., Bolle, B., Chevrier, P., Geandierc, G., & Tidua, A. (2007). Metallurgical study on chips obtained by high speed machining of a Ti-6 wt.%Al-4 wt.%V alloy. Materials Science and Engineering A, 452–453, 469–474.

    Google Scholar 

  44. Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3), 250–280.

    Google Scholar 

  45. Pavan, R. B., Venu Gopal, A., Amrita, M., & Goriparthi, B. N. (2019). Experimental investigation of graphene nanoplatelets–based minimum quantity lubrication in grinding Inconel 718. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture , 233(2), 400–410.

    Google Scholar 

  46. Guo, S. M., Li, C. H., Zhang, Y. B., Yang, M., Jia, D. Z., Zhang, X. P., et al. (2018). Analysis of volume ratio of castor/soybean oil mixture on minimum quantity lubrication grinding performance and microstructure evaluation by fractal dimension. Industrial Crops and Products, 111, 494–505.

    Google Scholar 

  47. Wang, Y. G., Li, C. H., Zhang, Y. B., Yang, M., Li, B. K., Dong, L., & Wang, J. (2018). Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 327–339.

    Google Scholar 

  48. Zhang, D. K., Li, C. H., Zhang, Y. B., Jia, D. Z., & Zhang, X. W. (2015). Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. International Journal of Advanced Manufacturing Technology, 78(5–8), 1275–1288.

    Google Scholar 

  49. Wang, Y. G., Li, C. H., Zhang, Y. B., Li, B. K., Yang, M., Zhang, X. P., et al. (2017). Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. Journal of Manufacturing Processes, 26, 94–104.

    Google Scholar 

  50. Bai, X. F., Li, C. H., Dong, L., & Yin, Q. A. (2019). Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 101, 2621–2632.

    Google Scholar 

  51. Zhang, Y. B., Li, C. H., Jia, D. Z., Li, B. K., Wang, Y. G., Yang, M., et al. (2016). Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 232, 100–115.

    Google Scholar 

  52. Li, B. K., Li, C. H., Zhang, Y. B., Wang, Y. G., Jia, D. Z., Yang, M., et al. (2017). Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. Journal of Cleaner Production, 154, 1–11.

    Google Scholar 

  53. Duan, Z. J., Yin, Q. A., Li, C. H., Dong, L., Bai, X. F., Zhang, Y. B., et al. (2020). Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations. International Journal of Advanced Manufacturing Technology, 107, 1277–1296.

    Google Scholar 

  54. Gao, T., Li, C. H., Zhang, Y. B., Yang, M., Jia, D. Z., Jin, T., et al. (2019). Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribology International, 131, 51–63.

    Google Scholar 

  55. Zhang, Y. B., Li, C. H., Ji, H. J., Yang, X. H., Yang, M., Jia, D. Z., et al. (2017). Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. International Journal of Machine Tools and Manufacture, 122, 81–97.

    Google Scholar 

  56. Gao, T., Zhang, X. P., Li, C. H., Zhang, Y. B., Yang, M., Jia, D. Z., et al. (2020). Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. Journal of Manufacturing Processes, 51, 44–61.

    Google Scholar 

  57. Zhang, Y. B., Li, C. H., Jia, D. Z., Zhang, D. K., & Zhang, X. W. (2015). Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. International Journal of Machine Tools and Manufacture, 99, 19–33.

    Google Scholar 

  58. Bai, X. F., Zhou, F. M., Li, C. H., Dong, L., Lv, X. J., & Yin, Q. A. (2020). Physicochemical properties of degradable vegetable-based oils on minimum quantity lubrication milling. International Journal of Advanced Manufacturing Technology, 106, 4143–4155.

    Google Scholar 

  59. Zhang, J. C., Wu, W. T., Li, C. H., Yang, M., Zhang, Y. B., Jia, D. Z., et al. (2020). Convective heat transfer coefficient model under nanofluid minimum quantity lubrication coupled with cryogenic air grinding Ti-6Al-4V. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00268-6.

    Article  Google Scholar 

  60. Duan, Z. J., Li, C. H., Zhang, Y. B., Dong, L., Bai, X. F., Yang, M., et al. (2020). Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication. Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2020.04.029.

    Article  Google Scholar 

  61. Huang, B. T., Li, C. H., Zhang, Y. B., Ding, W. F., Yang, Y. Y., Zhai, H., et al. (2020). Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2020.07.004.

    Article  Google Scholar 

  62. Gao, T., Li, C. H., Jia, D. Z., Zhang, Y. B., & Xu, X. F. (2020). Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.123328.

    Article  Google Scholar 

Download references

Acknowledgement

This research was financially supported by the following organizations: the National Natural Science Foundation of China (51975305, 51806112 and 51905289), the Major Research Project of Shandong Province (2019GGX104040 and 2019GSF108236), and the Shandong Provincial Natural Science Foundation of China (ZR2019PEE008), Major Science and technology innovation engineering projects of Shandong Province (2019JZZY020111), Applied basic research Youth Project of Qingdao science and technology plan (19-6-2-63-cg), the Scientific Research Development Project of Shandong Higher Education Institutions, China (J17KB016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhe Li or Zhanqiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Li, C., Dong, L. et al. Effects of Physicochemical Properties of Different Base Oils on Friction Coefficient and Surface Roughness in MQL Milling AISI 1045. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1629–1647 (2021). https://doi.org/10.1007/s40684-021-00318-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00318-7

Keywords

Navigation