Skip to main content

Advertisement

Log in

Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)2 nanostructures

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

We report the electrochemical performance of Ni(OH)2 on a gas diffusion layer (GDL). The Ni(OH)2 working electrode was successfully prepared via a simple method, and its electrochemical performance in 1 M NaOH electrolyte was investigated. The electrochemical results showed that the Ni(OH)2/GDL provided the maximum specific capacitance value (418.11 F·g−1) at 1 A·g−1. Furthermore, the Ni(OH)2 electrode delivered a high specific energy of 17.25 Wh·kg−1 at a specific power of 272.5 W·kg−1 and retained about 81% of the capacitance after 1000 cycles of galvanostatic charge-discharge (GCD) measurements. The results of scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed the occurrence of sodium deposition after long-time cycling, which caused the reduction in the specific capacitance. This study results suggest that the light-weight GDL, which can help overcome the problem of the oxide layer on metal-foam substrates, is a promising current collector to be used with Ni-based electroactive materials for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7(2008), No. 11, p. 845.

    Article  CAS  Google Scholar 

  2. Y.L. Huang, Y.Y. Li, Q.M. Gong, G.L. Zhao, P.J. Zheng, J.F. Bai, J.N. Gan, M. Zhao, Y. Shao, D.Z. Wang, L. Liu, G.S. Zou, D.M. Zhuang, J. Liang, H.W. Zhu, and C.W. Nan, Hierarchically mesostructured aluminum current collector for enhancing the performance of supercapacitors, ACS Appl. Mater. Interfaces, 10(2018), No. 19, p. 16572.

    Article  CAS  Google Scholar 

  3. H.X. Wang, W. Zhang, N.E. Drewett, H.B. Zhang, K.K. Huang, S.H. Feng, X.L. Li, J Kim, S. Yoo, T. Deng, S.J. Liu, D. Wang, and W.T. Zheng, Unifying miscellaneous performance criteria for a prototype supercapacitor via Co(OH)2 active material and current collector interactions, J. Microsc., 267(2017), No. 1, p. 34.

    Article  CAS  Google Scholar 

  4. H.X. Wang, D. Wang, T. Deng, X.Y. Zhang, C. Zhang, T.T. Qin, D.Y. Cheng, Q. Zhao, Y.N. Xie, L.D. Shao, H.B. Zhang, W. Zhang, and W.T. Zheng, Insight into graphene/hydroxide compositing mechanism for remarkably enhanced capacity, J. Power Sources, 399(2018), p. 238.

    Article  CAS  Google Scholar 

  5. M. Grdeń, M. Alsabet, and G. Jerkiewicz, Surface science and electrochemical analysis of nickel foams, ACS Appl. Mater. Interfaces, 4(2012), No. 6, p. 3012.

    Article  Google Scholar 

  6. N.K. Chaudhari, H. Jin, B. Kim, and K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting, Nanoscale, 9(2017), No. 34, p. 12231.

    Article  CAS  Google Scholar 

  7. W. Xing, S.Z. Qiao, X.Z. Wu, X.L. Gao, J. Zhou, S.P. Zhuo, S.B. Hartono, and D. Hulicova-Jurcakova, Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement, J. Power Sources, 196(2011), No. 8, p. 4123.

    Article  CAS  Google Scholar 

  8. Y. Gao, G.Q. Sun, S.L. Wang, and S. Zhu, Carbon nanotubes based gas diffusion layers in direct methanol fuel cells, Energy, 35(2010), No. 3, p. 1455.

    Article  CAS  Google Scholar 

  9. V. Gurau, M.J. Bluemle, E.S.D. Castro, Y.M. Tsou, J.A. Mann, and T.A. Zawodzinski, Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers), J. Power Sources, 160(2006), No. 2, p. 1156.

    Article  CAS  Google Scholar 

  10. C.J. Bapat and S.T. Thynell, Effect of anisotropic thermal conductivity of the GDL and current collector rib width on two-phase transport in a PEM fuel cell, J. Power Sources, 179(2008), No. 1, p. 240.

    Article  CAS  Google Scholar 

  11. C. Lim and C.Y. Wang, Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell, Electrochim. Acta, 49(2004), No. 24, p. 4149.

    Article  CAS  Google Scholar 

  12. C. Arbizzani, S. Beninati, M. Lazzari, and M. Mastragostino, Carbon paper as three-dimensional conducting substrate for tin anodes in lithium-ion batteries, J. Power Sources, 141(2005), No. 1, p. 149.

    Article  CAS  Google Scholar 

  13. A. El-kharouf, T.J. Mason, D.J.L. Brett, and B.G. Pollet, Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells, J. Power Sources, 218(2012), p. 393.

    Article  CAS  Google Scholar 

  14. L.Y. Zhang and H. Gong, A cheap and non-destructive approach to increase coverage/loading of hydrophilic hydroxide on hydrophobic carbon for lightweight and high-performance supercapacitors, Sci. Rep., 5(2016), art. No. 18108.

  15. U. Singh, A. Banerjee, D. Mhamane, A. Suryawanshi, K.K. Upadhyay, and S. Ogale, Surfactant free gram scale synthesis of mesoporous Ni(OH)2-r-GO nanocomposite for high rate pseudocapacitor application, RSC Adv., 4(2014), No. 75, p. 39875.

    Article  CAS  Google Scholar 

  16. Z.Y. Lu, Z. Chang, W. Zhu, and X.M. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance, Chem. Commun., 47(2011), No. 34, p. 9651.

    Article  CAS  Google Scholar 

  17. T. Sichumsaeng, N. Chanlek, and S. Maensiri, Effect of various electrolytes on the electrochemical properties of Ni(OH)2 nano-structures, Appl. Surf. Sci., 446(2018), p. 177.

    Article  CAS  Google Scholar 

  18. Y. Liu, J.Y. Zhou, L.L. Chen, P. Zhang, W.B. Fu, H. Zhao, Y.F. Ma, X.J. Pan, Z.X. Zhang, W.H. Han, and E.Q. Xie, Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors, ACS Appl. Mater. Interfaces, 7(2015), No. 42, p. 23515.

    Article  CAS  Google Scholar 

  19. Y.W. Jiang, J.W. Chen, J. Zhang, Y.P. Zeng, Y.C. Wang, F.L. Zhou, M. Kiani, and R.L. Wang, Controlled decoration of Pd on Ni(OH)2 nanoparticles by atomic layer deposition for high ethanol oxidation activity, Appl. Surf. Sci., 420(2017), p. 214.

    Article  CAS  Google Scholar 

  20. Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, and Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon, Crroon, 45(2007), No. 8, p. 1686.

    CAS  Google Scholar 

  21. G.X. Hu, C.X. Li, and H. Gong, Capacitance decay of nanoporous nickel hydroxide, J. Power Sources, 195(2010), No. 19, p. 6977.

    Article  CAS  Google Scholar 

  22. K.A. Owusu, L.B. Qu, J.T. Li, Z.Y. Wang, K.N. Zhao, C. Yang, K.M. Hercule, C. Lin, C.W. Shi, Q.L. Wei, L. Zhou, and L.Q. Mai, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors, Nat. Commun., 8(2017), art. No. 14264.

  23. H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, and S.E. Lindquist, Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous, J. Phys. Chem. B, 101(1997), No. 39, p. 7717.

    Article  Google Scholar 

  24. M. Forghani and S.W. Donne, Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior, J. Electrochem. Soc., 165(2018), No. 3, p. A664.

    Article  CAS  Google Scholar 

  25. K.V. Sankar, S. Surendran, K. Pandi, A.M. Allin, V.D. Nithya, Y.S. Lee, and R.K. Selvan, Studies on the electrochemical intercalation/de-intercalation mechanism of NiMn2O4 for high stable pseudocapacitor electrodes, RSC Adv., 5(2015), No. 35, p. 27649.

    Article  Google Scholar 

  26. V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ Sci., 7(2014), No. 5, p. 1597.

    Article  CAS  Google Scholar 

  27. D.W. Du, R. Lan, K. Xie, H.L. Wang, and S.W. Tao, Synthesis of Li2Ni2(MoO4)3 as a high-performance positive electrode for asymmetric supercapacitors, RSC Adv., 7(2017), No. 22, p. 13304.

    Article  CAS  Google Scholar 

  28. S. Ardizzone, G. Fregonara, and S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes, Electrochim, Electrochim. Acta, 35(1990), No. 1, p. 263.

    Article  CAS  Google Scholar 

  29. B. Senthilkumar, K.V. Sankar, L. Vasylechko, Y.S. Lee, and R.K. Selvan, Synthesis and electrochemical performances of maricite-NaMPO4 (M = Ni, Co, Mn) electrodes for hybrid supercapacitors, RSC Adv., 4(2014), No. 95, p. 53192.

    Article  CAS  Google Scholar 

  30. D.D. Zhao, S.J. Bao, W.J. Zhou, and H.L. Li, Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor, Electrochem. Commun., 9(2007), No. 5, p. 869.

    Article  CAS  Google Scholar 

  31. U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, and O.S. Joo, Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application, J. Power Sources, 188(2009), No. 1, p. 338.

    Article  CAS  Google Scholar 

  32. Q.H. Huang, X.Y. Wang, J. Li, C.L. Dai, S. Gamboa, and P.J. Sebastian, Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors, J. Power Sources, 164(2007), No. 1, p. 425.

    Article  CAS  Google Scholar 

  33. S.H. Kazemi and K. Malae, Electrodeposited Ni(OH)2 nanostructures on electro-etched carbon fiber paper for highly stable supercapacitors, J. Iran. Chem. Soc., 14(2017), No. 2, p. 419.

    Article  CAS  Google Scholar 

  34. N.A. Alhebshi, R.B. Rakhi, and H.N. Alshareef, Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes, J. Mater. Chem. A, 1(2013), No. 47, p. 14897.

    Article  CAS  Google Scholar 

  35. F.N. Pardo, D. Benetti, H.G. Zhao, V.M. Castaño, A. Vomiero, and F. Rosei, Platinum/palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer, J. Power Sources, 335(2016), p. 138.

    Article  Google Scholar 

  36. J.S. Meráz, F. Fernández, and L.F. Magaña, A method for the measurement of the resistance of electrolytic solutions, J. Electrochem. Soc., 152(2005), No. 4, p. E135.

    Article  Google Scholar 

  37. Q. Wang, J.E. Moser, and M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, J. Phys. Chem. B, 109(2005), No. 31, p. 14945.

    Article  CAS  Google Scholar 

  38. J. Wang, Z. Gao, Z.S. Li, B. Wang, Y.X. Yan, Q. Liu, T. Mann, M.L. Zhang, and Z.H. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties, J. Solid State Chem., 184(2011), No. 6, p. 1421.

    Article  CAS  Google Scholar 

  39. T. Li, U. Gulzar, X. Bai, M. Lenocini, M. Prato, K.E. Aifantis, C. Capiglia, and R.P. Zaccaria, Insight on the failure mechanism of Sn electrodes for sodium-ion batteries: Evidence of pore formation during sodiation and crack formation during desodiation, ACS Appl. Energy Mater., 2(2019), No. 1, p. 860.

    Article  CAS  Google Scholar 

  40. S.J. He, X.W. Hu, S.L. Chen, H. Hu, M. Hanif, and H.Q. Hou, Needle-like polyaniline nanowires on graphite nanofibers: Hierarchical micro/nano-architecture for high performance supercapacitors, J. Mater. Chem., 22(2012), No. 11, p. 5114.

    Article  CAS  Google Scholar 

  41. S.M. Kim, C.Y. Ahn, Y.H. Cho, S. Kim, W. Hwang, S. Jang, S. Shin, G. Lee, Y.E. Sung, and M. Choi, High-performance fuel cell with stretched catalyst-coated membrane: One-step formation of cracked electrode, Sci. Rep., 6(2016), art. No. 26503.

  42. A. Ghosh, S. Ghosh, G.M. Seshadhri, and S. Ramaprabhu, Green synthesis of nitrogen- doped self-assembled porous carbon-metal oxide composite towards energy and environmental applications, Sci. Rep., 9(2019), art. No. 5187.

  43. G.G. Zhang, L. Wang, Y. Liu, W.F. Li, F. Yu, W. Lu, and H.T. Huang, Cracks bring robustness: A pre-cracked NiO nanosponge electrode with greatly enhanced cycle stability and rate performance, J. Mater. Chem. A, 4(2016), No. 21, p. 8211.

    Article  CAS  Google Scholar 

  44. Y. Yui, M. Hayashi, and J. Nakamura, In situ microscopic observation of sodium deposition/dissolution on sodium electrode, Sci. Rep., 6(2016), art. No. 22406.

  45. M.Q. Zhu, S.M. Li, B. Li, Y.J. Gong, Z.G. Du, and S.B. Yang, Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes, Sci. Adv., 5(2019), No. 4, art. No. eaau6264.

  46. B. Sun, C. Pompe, S. Dongmo, J.Q. Zhang, K. Kretschmer, D. Schröder, J. Janek, and G.X. Wang, Challenges for developing rechargeable room-temperature sodium oxygen batteries, Adv. Mater. Technol., 3(2018), No. 9, art. No. 1800110.

  47. W.X. Mei, H.D. Chen, J.H. Sun, and Q.S. Wang, The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model, Sustainable Energy Fuels, 3(2019), No. 1, p. 148.

    Article  CAS  Google Scholar 

  48. R. Kötz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 45(2000), No. 15–16, p. 2483.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Office of the Higher Education Commission under NRU Project of Thailand and the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation (MHESI), Thailand. T. Sichumsaeng would like to thank the Science Achievement Scholarship of Thailand (SAST) for the support of her PhD study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Maensiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sichumsaeng, T., Phromviyo, N. & Maensiri, S. Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)2 nanostructures. Int J Miner Metall Mater 28, 1038–1047 (2021). https://doi.org/10.1007/s12613-020-2174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2174-1

Keywords

Navigation