Skip to main content
Log in

Performance evaluation of Al6061-graphene nanocomposites surface engineered by a novel multiple microchannel reinforcement approach in friction stir processing

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In this paper, the performance evaluation of Al-graphene nanoplatelets (GNP) composites surface engineered by a modified friction stir processing (FSP) is reported. Here, multiple micro channels (MCRF) are used to incorporate GNPs in the aluminium matrix instead of a single large groove (SCRF) that is usually used in conventional FSP. With the MCRF approach, ~ 18% higher peak temperature (compared to SCRF) was observed owing to the presence of aluminium sandwiched between consecutive microgrooves and higher heat accumulation in the stir zone. The MCRF approach have significantly reduced the coefficient of friction and wear rates of the processed composites by ~ 14% and ~ 57%, respectively as compared to the SCRF approach. The proposed reinforcement filling method significantly improves the particle dispersion in the matrix, which in turn changes the adhesion mode of wear in SCRF to abrasive mode in MCRF fabricated composites. The uniformly squeezed out GNP tribolayer prevented the direct metal to metal contact between composite and its counterpart which have effectively reduced the deterioration rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Raj RR, Yoganandh J, Saravanan MSS, Kumar SS (2020) Effect of graphene addition on the mechanical characteristics of AA7075 aluminium nanocomposites. Carbon Lett 1:1–12

    Google Scholar 

  2. Sharma A, Gupta G, Paul J (2021) A comprehensive review on the dispersion and survivability issues of carbon nanotubes in Al/CNT nanocomposites fabricated via friction stir processing. Carbon Lett 3:1–13

    Google Scholar 

  3. Sharma A, Sharma VM, Sahoo B, Joseph J, Paul J (2019) Effect of exfoliated few-layered graphene on corrosion and mechanical behaviour of the graphitized Al–SiC surface composite fabricated by FSP. Bull Mater Sci 42:204

    Article  Google Scholar 

  4. Şenel MC, Gürbüz M (2020) Microstructure and wear behaviour of graphene–Si3N4 binary particle-reinforced aluminium hybrid composites. Bull Mater Sci 43:148

    Article  Google Scholar 

  5. Sharma A, Tripathi A, Narsimhachary D, Mahto RP, Paul J (2019) Surface alteration of aluminium alloy by an exfoliated graphitic tribolayer during friction surfacing using a consumable graphite rich tool. Surf Topogr Metrol Prop 7:045015

    Article  CAS  Google Scholar 

  6. Sharma A, Fujii H, Paul J (2020) Influence of reinforcement incorporation approach on mechanical and tribological properties of AA6061-CNT nanocomposite fabricated via FSP. J Manuf Process 59:604

    Article  Google Scholar 

  7. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater Sci Eng A 433:50

    Article  Google Scholar 

  8. Song M, Wu L, Liu J, Hu Y (2021) Effects of laser cladding on crack resistance improvement for aluminum alloy used in aircraft skin. Opt Laser Technol 133:106531

    Article  CAS  Google Scholar 

  9. Subramanian A, Pratap T, Kurup DA, Thangaraj G, Bhowmik S, Mukherjee S, Rane R (2016) Titanium nitride deposition on aluminium for adhesion promotion. Surf Eng 32:272

    Article  CAS  Google Scholar 

  10. Sengupta J, Das K, Nandi UN, Jacob C (2019) Substrate free synthesis of graphene nanoflakes by atmospheric pressure chemical vapour deposition using Ni powder as a catalyst. Bull Mater Sci 42:136

    Article  Google Scholar 

  11. Puchi-Cabrera ES, Maccio R, Staia MH (2006) Fatigue behaviour of 7075-T6 aluminium alloy coated with WC–12Co alloy deposited by plasma spray. Surf Eng 22:253

    Article  CAS  Google Scholar 

  12. Sahoo B, Joseph J, Sharma A, Paul J (2017) Fatigue behaviour of 7075-T6 aluminium alloy coated with WC–12Co alloy deposited by plasma spray. Mater Des 116:51

    Article  CAS  Google Scholar 

  13. Vandana B, Syamala P, Venugopal DS, Sk SRKI, Venkateswarlu B, Jagannatham M, Kolenčík M, Ramakanth I, Dumpala R, Sunil BR (2019) Magnesium/fish bone derived hydroxyapatite composites by friction stir processing: Studies on mechanical behaviour and corrosion resistanc. Bull Mater Sci 42:122

    Article  Google Scholar 

  14. Kumar H, Prasad R, Kumar P, Tewari SP, Singh JK (2020) Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing. J Alloy Compd 831:154832

    Article  CAS  Google Scholar 

  15. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419:344

    Article  Google Scholar 

  16. Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK (1999) High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Mater 42:163

    Article  Google Scholar 

  17. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) Nanocrystallized magnesium alloy–uniform dispersion of C60 molecules. Scripta Mater 55:1067

    Article  CAS  Google Scholar 

  18. Asadi P, Besharati Givi MK, Faraji G (2010) Producing ultrafine-grained AZ91 from as-cast AZ91 by FSP. Mater Manuf Processes 25:1219

    Article  CAS  Google Scholar 

  19. Rathee S, Maheshwari S, Siddiquee AN, Srivastava M (2018) Distribution of reinforcement particles in surface composite fabrication via friction stir processing: suitable strategy. Mater Manuf Processes 33:262

    Article  CAS  Google Scholar 

  20. John J, Shanmuganatan SP, Kiran MB, Senthil Kumar VS, Krishnamurthy R (2019) Investigation of friction stir processing effect on AA 2014-T6. Mater Manuf Processes 34:159

    Article  CAS  Google Scholar 

  21. Rana H, Badheka V, Kumar A, Satyaprasad A (2018) Strategical parametric investigation on manufacturing of Al–Mg–Zn–Cu alloy surface composites using FSP. Mater Manuf Processes 33:534

    Article  CAS  Google Scholar 

  22. Gangil N, Maheshwari S, Siddiquee AN (2018) Multipass FSP on AA6063-T6 Al: strategy to fabricate surface composites. Mater Manuf Process 33:805

    Article  CAS  Google Scholar 

  23. Zhang Q, Xiao BL, Wang D, Ma ZY (2011) Formation mechanism of in situ Al3Ti in Al matrix during hot pressing and subsequent friction stir processing. Mater Chem Phys 130:1109

    Article  CAS  Google Scholar 

  24. Rajeshkumar R, Udhayabanu V, Srinivasan A, Ravi KRR (2017) Microstructural evolution in ultrafine grained Al-Graphite composite synthesized via combined use of ultrasonic treatment and friction stir processing. J Alloy Compd 726:358

    Article  CAS  Google Scholar 

  25. Izadi H, Nolting A, Munro C, Bishop DP, Plucknett KP, Gerlich AP (2013) Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol 213:1900

    Article  CAS  Google Scholar 

  26. Ebnonnasir A, Karimzadeh F, Enayati MH (2011) Novel artificial neural network model for evaluating hardness of stir zone of submerge friction stir processed Al 6061-T6 plate. Mater Sci Technol 27:990

    Article  CAS  Google Scholar 

  27. Paidar M, Ojo OO, Ezatpour HR, Heidarzadeh A (2019) Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB). Surf Coat Technol 361:159

    Article  CAS  Google Scholar 

  28. Sharma A, Sagar S, Mahto RP, Sahoo B, Pal SK, Paul J (2018) Surface modification of Al6061 by graphene impregnation through a powder metallurgy assisted friction surfacing. Surf Coat Technol 337:12

    Article  CAS  Google Scholar 

  29. Sharma A, Sharma VM, Paul J (2020) Fabrication of bulk aluminum-graphene nanocomposite through friction stir alloying. J Compos Mater 54:45

    Article  CAS  Google Scholar 

  30. Sharma A, Sharma VM, Sahoo B, Pal SK, Paul J (2019) Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing. J Manuf Process 37:53

    Article  Google Scholar 

  31. Sharma A, Sharma VM, Paul J (2019) A comparative study on microstructural evolution and surface properties of graphene/CNT reinforced Al6061− SiC hybrid surface composite fabricated via friction stir processing. Trans Nonferrous Metals Soc China 29:2005

    Article  CAS  Google Scholar 

  32. Morisada Y, Fujii H, Nagaoka T, Nogi K, Fukusumi M (2007) Fullerene/A5083 composites fabricated by material flow during friction stir processing. Compos A Appl Sci Manuf 38:2097

    Article  Google Scholar 

  33. Maurya R, Kumar B, Ariharan S, Ramkumar J, Balani K (2016) Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Mater Des 98:155

    Article  CAS  Google Scholar 

  34. Khodabakhshi F, Nosko M, Gerlich AP (2018) Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing. Surf Coat Technol 335:288

    Article  CAS  Google Scholar 

  35. Blanco FJ, Jimenez ME, Saenz-Diez MJ, Caputi L, Miriello D, De Luca R, Sanchez RA, Carvajal FH (2018) Tribological behavior of AA1050H24-graphene nanocomposite obtained by friction stir processing. Metals 8:113

    Article  Google Scholar 

  36. Prashantha Kumar HG, Anthony XM (2018) Encapsulation and microwave hybrid processing of Al 6061–Graphene–SiC composites. Mater Manuf Processes 33:19

    Article  CAS  Google Scholar 

  37. Mohamed Mahmoud Ibrahim A, Shi X, Zhai W, Yao J, Xu Z, Cheng L, Zhu Q, Xiao Y, Zhang Q, Wang Z (2014) Tribological behavior of NiAl–1.5 wt% graphene composite under different velocities. Tribol Trans 57:1044

    Article  CAS  Google Scholar 

  38. Prashantha Kumar HG, Anthony XM (2017) Improvement of thermal properties of micro head engine electroplated by graphene: experimental and thermal simulation. Tribol Mater Surf Interf 11:88

    Article  CAS  Google Scholar 

  39. Sharma A, Narsimhachary D, Sharma VM, Sahoo B, Paul J (2019) Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite and carbon nanotubes via FSP: a tribological study. Surf Coat Technol 368:175

    Article  CAS  Google Scholar 

  40. Tarlton T, Sullivan E, Brown J, Derosa PA (2017) The role of agglomeration in the conductivity of carbon nanotube composites near percolation. J Appl Phys 121:085103

    Article  Google Scholar 

  41. Gao X, Yue H, Guo E, Zhang S, Wang B, Guan E, Song S, Zhang H (2018) Preparation and tribological properties of homogeneously dispersed graphene-reinforced aluminium matrix composites. Mater Sci Technol (United Kingdom) 34:1316

    Article  CAS  Google Scholar 

  42. Sharma A, Sharma VM, Gugaliya A, Rai P, Pal SK, Paul J (2020) Friction stir lap welding of AA6061 aluminium alloy with a graphene interlayer. Mater Manuf Process 35:258

    Article  CAS  Google Scholar 

  43. Sharma A, Sharma VM, Mewar S, Pal SK, Paul J (2017) Friction stir processing of Al6061-SiC-graphite hybrid surface composites. Mater Manuf Process 33:1

    CAS  Google Scholar 

  44. Kumar HGP, Xavior MA (2016) Fatigue and wear behavior of Al6061–graphene composites synthesized by powder metallurgy. Trans Indian Inst Met 69:415

    Article  CAS  Google Scholar 

  45. Varghese S, Paul SA (2014) Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Int J Mech Prod Eng 11:1

    Google Scholar 

  46. Wu L, Zhao Z, Bai P, Zhao W, Li Y, Liang M, Liao H, Huo P, Li J (2020) Wear resistance of graphene nano-platelets (GNPs) reinforced AlSi10Mg matrix composite prepared by SLM. Appl Surf Sci 503:144156

    Article  CAS  Google Scholar 

  47. Sahoo B, Joseph J, Sharma A, Paul J (2019) Particle size and shape effects on the surface mechanical properties of aluminium coated with carbonaceous materials. J Compos Mater 53:261

    Article  CAS  Google Scholar 

  48. Zhang J, Chen Z, Wu H, Zhao J, Jiang Z (2019) Effect of graphene on the tribolayer of aluminum matrix composite during dry sliding wear. Surf Coat Technol 358:907

    Article  CAS  Google Scholar 

  49. Zhang J, Yang S, Chen Z, Wu H, Zhao J, Jiang Z (2019) Graphene encapsulated SiC nanoparticles as tribology-favoured nanofillers in aluminium composite. Compos B Eng 162:445

    Article  CAS  Google Scholar 

  50. Tabandeh-Khorshid M, Omrani E, Menezes PL, Rohatgi PK (2016) Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelet. Eng Sci Technol Int J 19:463

    Google Scholar 

  51. Inada K, Fujii H, Ji YS, Sun YF, Morisada Y (2010) Effect of gap on FSW joint formation and development of friction powder processing. Sci Technol Weld Joining 15:131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 178 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Das, T. & Paul, J. Performance evaluation of Al6061-graphene nanocomposites surface engineered by a novel multiple microchannel reinforcement approach in friction stir processing. Carbon Lett. 31, 1111–1124 (2021). https://doi.org/10.1007/s42823-021-00230-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00230-9

Keywords

Navigation