Skip to main content
Log in

Can we run to infinity? The diameter of the diffeomorphism group with respect to right-invariant Sobolev metrics

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The group \({\text {Diff}}({\mathcal {M}})\) of diffeomorphisms of a closed manifold \({\mathcal {M}}\) is naturally equipped with various right-invariant Sobolev norms \(W^{s,p}\). Recent work showed that for sufficiently weak norms, the geodesic distance collapses completely (namely, when \(sp\le \dim {\mathcal {M}}\) and \(s<1\)). But when there is no collapse, what kind of metric space is obtained? In particular, does it have a finite or infinite diameter? This is the question we study in this paper. We show that the diameter is infinite for strong enough norms, when \((s-1)p\ge \dim {\mathcal {M}}\), and that for spheres the diameter is finite when \((s-1)p<1\). In particular, this gives a full characterization of the diameter of \({\text {Diff}}(S^1)\). In addition, we show that for \({\text {Diff}}_c({\mathbb {R}}^n)\), if the diameter is not zero, it is infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Author comment

The grant information should appear on the first page and not there.

Notes

  1. This is, by no means, an excessive survey.

  2. To be exact, Shnirelman proved the boundedness of the diameter of \({\text {Diff}}_{\mu }({\mathcal {M}})\) when \({\mathcal {M}}\) is the three-dimensional cube, but his proof can be modified to show the result for contractible manifolds of dimension \(\dim {\mathcal {M}}\ge 3\), 0 see, e.g., [3, 38].

  3. In [15] the interpolation is defined with respect to the homogeneous \({\dot{W}}^{1,p}\) norm, but this does not matter as it is, by the Poincaré inequality, equivalent to the full \(W^{1,p}\) norm on the space \(W_0^{1,p}\) which we are considering. Similarly, the equivalence there is shown between the interpolation space and the homogeneous \({\dot{W}}^{s,p}\) norm, which is again equivalent to the full norm [15, Section 2.3].

  4. Note that this holds if the left multiplication \(L_g\) is Lipschitz with Lipschitz constant that is independent of g, see [9, Theorem 1].

References

  1. Amari, S., Nagaoka, H.: Methods of Information Geometry, vol. 191. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  2. Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics, vol. 125. Springer, Berlin (1999)

    MATH  Google Scholar 

  4. Banyaga, A.: The Structure of Classical Diffeomorphism Groups, vol. 400. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  5. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group. Ann. Glob. Anal. Geom. 44(1), 5–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauer, M., Bruveris, M., Michor, P.W.: Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group II. Ann. Glob. Anal. Geom. 44(4), 361–368 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vis. 50(1–2), 60–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauer, M., Escher, J., Kolev, B.: Local and global well-posedness of the fractional order EPDiff equation on \({\mathbb{R}}^d\). J. Differ. Equ. 258(6), 2010–2053 (2015)

    Article  MATH  Google Scholar 

  9. Bauer, M., Harms, P., Preston, S.C.: Vanishing distance phenomena and the geometric approach to SQG. Arch. Ration. Mech. Anal. 235, 1445–1466 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauer, M., Joshi, S., Modin, K.: Diffeomorphic density matching by optimal information transport. SIAM J. Imaging Sci. 8(3), 1718–1751 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bauer, M., Kolev, B., Preston, S.C.: Geometric investigations of a vorticity model equation. J. Differ. Equ. 260(1), 478–516 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  13. Behzadan, A., Holst, M.: Multiplication in Sobolev spaces, revisited. arXiv:1512.07379 (2015)

  14. Brandenbursky, M., Shelukhin, E.: The \(L^p\)-diameter of the group of area-preserving diffeomorphisms of \(S^2\). Geom. Topol. 21(6), 3785–3810 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brasco, L., Salort, A.: A note on homogeneous Sobolev spaces of fractional order. Ann. Mate. Pura Appl. (1923-) 198, 1295–1330 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bruveris, M., Vialard, F.-X.: On completeness of groups of diffeomorphisms. J. Eur. Math. Soc. 19(5), 1507–1544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burago, D., Ivanov, S., Polterovich, L.: Conjugation-invariant norms on groups of geometric origin. In: Groups of Diffeomorphisms: in Honor of Shigeyuki Morita on the Occasion of his 60th Birthday, pp. 221–250. Mathematical Society of Japan (2008)

  18. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three-dimensional vorticity equation. Commun. Pure Appl. Math. 38(6), 715–724 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cotter, C.J., Deasy, J., Pryer, T.: The \(r\)-Hunter–Saxton equation, smooth and singular solutions and their approximation. Nonlinearity 33(12), 7016 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(1), 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eichhorn, J.: Global Analysis on Open Manifolds. Nova Science Publishers Inc., New York (2007)

    MATH  Google Scholar 

  23. Eliashberg, Y., Polterovich, L.: Biinvariant metrics on the group of Hamiltonian diffeomorphisms. Int. J. Math. 4(05), 727–738 (1993)

    Article  MATH  Google Scholar 

  24. Eliashberg, Y., Ratiu, T.: The diameter of the symplectomorphism group is infinite. Invent. Math. 103(1), 327–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Escher, J., Kolev, B., Wunsch, M.: The geometry of a vorticity model equation. Commun. Pure Appl. Anal. 11(4), 1407–1419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fukui, K., Rybicki, T., Yagasaki, T.: The uniform perfectness of diffeomorphism groups of open manifolds. arXiv:1905.07664

  27. Grenander, U.: General Pattern Theory: A Mathematical Study of Regular Structures. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  28. Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. 56(4), 617–694 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Han, W., Atkinson, K., Zheng, H.: Some integral identities for spherical harmonics in an arbitrary dimension. J. Math. Chem. 50(5), 1126–1135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hofer, H.: On the topological properties of symplectic maps. Proc. R. Soc. Edinb. Sect. A Math. 115(1–2), 25–38 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hunter, J.K., Saxton, R.: Dynamics of director fields. SIAM J. Appl. Math. 51(6), 1498–1521 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jerrard, R.L., Maor, C.: Geodesic distance for right-invariant metrics on diffeomorphism groups: critical Sobolev exponents. Ann. Glob. Anal. Geom. 56(2), 351–360 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jerrard, R.L., Maor, C.: Vanishing geodesic distance for right-invariant Sobolev metrics on diffeomorphism groups. Ann. Glob. Anal. Geom. 55(4), 631–656 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Khesin, B., Lenells, J., Misiolek, G., Preston, S.: Curvatures of Sobolev metrics on diffeomorphism groups. Pure Appl. Math. Q. 9(2), 291–332 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Khesin, B., Lenells, J., Misiolek, G., Preston, S.: Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geom. Funct. Anal. 23(1), 334–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Khesin, B., Misiołek, G.: Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176(1), 116–144 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Khesin, B., Wendt, R.: The Geometry of Infinite-Dimensional Groups, vol. 51. Springer, Berlin (2008)

    MATH  Google Scholar 

  39. Kolev, B.: Local well-posedness of the EPDiff equation: a survey. J. Geom. Mech. 9(2), 167–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40(2), 857–868 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. American Mathematical Society, Providence (1997)

    Book  MATH  Google Scholar 

  42. Lenells, J.: The Hunter–Saxton equation describes the geodesic flow on a sphere. J. Geom. Phys. 57(10), 2049–2064 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lenells, J.: The Hunter–Saxton equation: a geometric approach. SIAM J. Math. Anal. 40(1), 266–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Leslie, J.: On a differential structure for the group of diffeomorphisms. Topology 6, 263–271 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  45. Leoni, G.: A First Course in Sobolev Spaces, 2nd edn. American Mathematical Society, Providence (2017)

    Book  MATH  Google Scholar 

  46. Mann, K., Rosendal, C.: Large-scale geometry of homeomorphism groups. Ergod. Theory Dyn. Syst. 38(7), 2748–2779 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4(1), 375–405 (2002)

    Article  Google Scholar 

  49. Misiołek, G.: A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24(3), 203–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Misiołek, G., Preston, S.C.: Fredholm properties of Riemannian exponential maps on diffeomorphism groups. Invent. Math. 179(1), 191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mumford, D., Desolneux, A.: Pattern Theory: the Stochastic Analysis of Real-World Signals. AK Peters/CRC Press, Boca Raton (2010)

    Book  MATH  Google Scholar 

  52. Peetre, J.: Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier 16, 279–317 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  53. Salo, M.: Function spaces—lecture notes. http://users.jyu.fi/~salomi/lecturenotes/fsp08_lectures.pdf (2008)

  54. Shelukhin, E.: The Hofer norm of a contactomorphism. J. Symp. Geom. 15(4), 1173–1208 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shnirelman, A.I.: On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Math. USSR-Sbornik 56(1), 79 (1987)

    Article  Google Scholar 

  56. Shnirelman, A.I.: Generalized fluid flows, their approximation and applications. Geom. Funct. Anal. GAFA 4(5), 586–620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tiğlay, F., Vizman, C.: Generalized Euler–Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications. Lett. Math. Phys. 97(1), 45–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  59. Triebel, H.: Theory of Function Spaces II, volume 84 of Monographs in Mathematics. Birkhäuser Verlag, Basel (1992)

    Google Scholar 

  60. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005). ((electronic)

    Article  MathSciNet  MATH  Google Scholar 

  61. Tsuboi, T.: On the uniform perfectness of diffeomorphism groups. In: Groups of Diffeomorphisms: in Honor of Shigeyuki Morita on the Occasion of his 60th Birthday, pp. 505–524. Mathematical Society of Japan (2008)

  62. Wunsch, M.: On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric. J. Nonlinear Math. Phys. 17(1), 7–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Younes, L.: Shapes and Diffeomorphisms, vol. 171. Springer, Berlin (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank to Stefan Haller, Philipp Harms, Stephen Preston, Tudor Ratiu and Josef Teichman for various discussions during the work on this paper, and to Meital Maor for her help with the figures. We are in particular grateful to Kathryn Mann and Tomasz Rybicki for introducing us to the literature on fragmentation and perfectness, and to Bob Jerrard for his continuous and valuable help throughout the work on this project. This project was initiated during the BIRS workshop “Shape Analysis, Stochastic Geometric Mechanics and Applied Optimal Transport” in December 2018; we are grateful to BIRS for their hospitality. M. Bauer was partially supported by NSF-grants 1912037 and 1953244. C. Maor was partially supported by ISF-grant 1269/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cy Maor.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.9

We consider the family of piecewise-linear maps \(\psi _{\lambda +1,\delta }\)

$$\begin{aligned} \psi _{\lambda +1,\delta } = {\left\{ \begin{array}{ll} (\lambda +1)x &{} x\in \left[ 0,\frac{1-\delta }{\lambda +1}\right] \\ \frac{\delta (\lambda +1)}{\lambda +\delta }\left( x- \frac{1-\delta }{\lambda +1}\right) +1-\delta &{} x\in \left[ \frac{1-\delta }{\lambda +1},1\right] \end{array}\right. } = {\left\{ \begin{array}{ll} (\lambda +1)x &{} x\in \left[ 0,\frac{1-\delta }{\lambda +1}\right] \\ \frac{\delta (\lambda +1)x + (1-\delta )\lambda }{\lambda +\delta } &{} x\in \left[ \frac{1-\delta }{\lambda +1},1\right] \end{array}\right. }. \end{aligned}$$

Since piecewise-linear maps are not elements of the group of diffeomorphisms \({\text {Diff}}(S^1)\) we have to smoothen the maps around the break points \(\frac{1-\delta }{\lambda +1}\) and \(0\sim 1\). However, since the \(W^{s,p}\)-metric can be extended to the space of Lipschitz-maps (for \(s<1+1/p\)) and since the smoothening can be done in such a way that the change in the distance to identity is arbitrarily small, we ignore this in the following.

In the following we will bound the length of the linear homotopy \(\varphi _t(x)\) between \({\text {Id}}\) and \(\psi _{\lambda +1,\delta }\) which albeit being straightforward turns out to be a somewhat tedious calculation. We bound the length below with respect to the \({\dot{W}}^{s,p}\) norm, under the assumption that \(s>1\). Boundedness with respect to the lower order parts of \(W^{s,p}\) norm, as well as for \(W^{s,p}\) norm for \(s\le 1\), is similar, but simpler. We have

$$\begin{aligned} \varphi _t(x) = (1-t)x + t \psi _{\lambda +1,\delta } (x) = {\left\{ \begin{array}{ll} (1+\lambda t)x&{} x\in \left[ 0,\frac{1-\delta }{\lambda +1}\right] \\ x + t\frac{(1-\delta )\lambda }{\lambda +\delta }(1-x) &{} x\in \left[ \frac{1-\delta }{\lambda +1},1\right] \end{array}\right. }. \end{aligned}$$

Its inverse is then given by

$$\begin{aligned} \varphi _t^{-1}(y) = {\left\{ \begin{array}{ll} \frac{y}{1+\lambda t} &{} y\in \left[ 0,\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right] \\ \frac{y-1}{1-t \frac{(1-\delta )\lambda }{\lambda +\delta }} + 1 &{} y\in \left[ \frac{(1-\delta )(1+\lambda t)}{\lambda +1},1\right] \end{array}\right. }, \end{aligned}$$

and its time derivative is

$$\begin{aligned} \partial _t\varphi _t(x) = \psi _{\lambda +1,\delta } (x) - x= {\left\{ \begin{array}{ll} \lambda x &{} x\in \left[ 0,\frac{1-\delta }{\lambda +1}\right] \\ \frac{(1-\delta )\lambda }{\lambda +\delta }(1-x) &{} x\in \left[ \frac{1-\delta }{\lambda +1},1\right] \end{array}\right. }. \end{aligned}$$

The vector field \(u_t\) defined by \(\partial _t\varphi _t = u_t \circ \varphi _t\) is therefore

$$\begin{aligned} u_t(y)= & {} \partial _t \varphi _t (\varphi _t^{-1}(y)) = {\left\{ \begin{array}{ll} \frac{\lambda y}{1+\lambda t} &{} y\in \left[ 0,\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right] \\ \frac{(1-\delta )\lambda }{\lambda +\delta }\frac{1-y}{1-t \frac{(1-\delta )\lambda }{\lambda +\delta }} &{} y\in \left[ \frac{(1-\delta )(1+\lambda t)}{\lambda +1},1\right] \end{array}\right. } \\= & {} {\left\{ \begin{array}{ll} \frac{y}{t+\frac{1}{\lambda }} &{} y\in \left[ 0,\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right] \\ \frac{(1-\delta )(1-y)}{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })} &{} y\in \left[ \frac{(1-\delta )(1+\lambda t)}{\lambda +1},1\right] \end{array}\right. }, \end{aligned}$$

and therefore

$$\begin{aligned} u_t'(y) = {\left\{ \begin{array}{ll} \frac{1}{t+\frac{1}{\lambda }} &{} y\in \left[ 0,\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right] \\ \frac{-(1-\delta )}{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })} &{} y\in \left[ \frac{(1-\delta )(1+\lambda t)}{\lambda +1},1\right] \end{array}\right. }. \end{aligned}$$

We now evaluate the \({\dot{W}}^{1+\sigma ,p}\)-norm of \(u_t\), for \(\sigma p < 1\). That is, we evaluate the \((\sigma ,p)\)-Gagliardo seminorm of \(u_t'\), whose pth power is

$$\begin{aligned} \iint _{{\mathbb {R}}^2} \frac{|u_t'(x) - u_t'(y)|^p}{|x-y|^{1+\sigma p}}\,dx\,dy= & {} 2\iint _{y>x} \frac{|u_t'(x) - u_t'(y)|^p}{|x-y|^{1+\sigma p}}\,dx\,dy \\= & {} 2\int _{-\infty }^\infty \int _0^\infty \frac{|u_t'(x) - u_t'(x+s)|^p}{s^{1+\sigma p}}\,ds\,dx. \end{aligned}$$

We split this double integral into different regions:

$$\begin{aligned} \begin{aligned}&\int _{-\infty }^\infty \int _0^\infty \frac{|u_t'(x) - u_t'(x+s)|^p}{s^{1+\sigma p}}\,ds\,dx \\&\quad = \int _{-\infty }^0 \int _{-x}^{-x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}} \frac{\left( t+\frac{1}{\lambda }\right) ^{-p}}{s^{1+\sigma p}}\,ds\,dx \\&\qquad + \int _{-\infty }^0 \int _{-x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}}^{-x+1} \frac{\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p}{s^{1+\sigma p}}\,ds\,dx \\&\qquad +\int _0^{\frac{(1-\delta )(1+\lambda t)}{\lambda +1}} \int _{-x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}}^{-x+1} \frac{\left( \frac{1}{t+\frac{1}{\lambda }}+\frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p}{s^{1+\sigma p}}\,ds\,dx \\&\qquad + \int _{\frac{(1-\delta )(1+\lambda t)}{\lambda +1}}^1 \int _{-x+1}^\infty \frac{\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p}{s^{1+\sigma p}}\,ds\,dx . \end{aligned} \end{aligned}$$

We now evaluate each of the four integrals in the right-hand side separately. We will use repeatedly the following: for \(\alpha \in (0,1)\) and \(a>0\),

$$\begin{aligned} \lim _{x\rightarrow \infty } (x+a)^\alpha - x^\alpha = 0, \end{aligned}$$

and

$$\begin{aligned} (1-x)^\alpha \ge 1 - x^\alpha \qquad x\in [0,1]. \end{aligned}$$

All the constants C below are \(C=C(p,\sigma )>0\), independent of \(\lambda \), \(\delta \) and t.

For the first integral we have:

$$\begin{aligned} \begin{aligned}&\left( t+\frac{1}{\lambda }\right) ^{-p}\int _{-\infty }^0 \int _{-x}^{-x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}} \frac{1}{s^{1+\sigma p}}\,ds\,dx \\&\quad = \left( t+\frac{1}{\lambda }\right) ^{-p}\frac{1}{\sigma p} \int _{-\infty }^0 \left( (-x)^{-\sigma p} - \left( -x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{-\sigma p}\right) \,dx \\&\quad = \left( t+\frac{1}{\lambda }\right) ^{-p}\frac{1}{\sigma p} \int _{0}^\infty \left( x^{-\sigma p} - \left( x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{-\sigma p}\right) \,dx \\&\quad = \left( t+\frac{1}{\lambda }\right) ^{-p}\frac{1}{(1-\sigma p)\sigma p} \left( x^{1-\sigma p} - \left( x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p}\right) _0^\infty \\&\quad = \left( t+\frac{1}{\lambda }\right) ^{-p}\frac{1}{(1-\sigma p)\sigma p} \left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p} \\&\quad< C \left( t+\frac{1}{\lambda }\right) ^{-p+(1-\sigma p)} < C t^{-p+(1-\sigma p)}. \end{aligned} \end{aligned}$$

The second integral can be bounded via:

$$\begin{aligned}&\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p\int _{-\infty }^0 \int _{-x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}}^{-x+1} \frac{1}{s^{1+\sigma p}}\,ds\,dx \\&\quad = \frac{1}{\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \\&\qquad \int _{-\infty }^0 \left( \left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}-x\right) ^{-\sigma p} - (1-x)^{-\sigma p}\right) \,dx \\&\quad = \frac{1}{\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \\&\qquad \int ^{\infty }_0 \left( \left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}+x\right) ^{-\sigma p} - (1+x)^{-\sigma p}\right) \,dx \\&\quad = \frac{1}{(1-\sigma p)\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \\&\qquad \left( \left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}+x\right) ^{1-\sigma p} - (1+x)^{1-\sigma p}\right) _0^\infty \\&\quad = \frac{1}{(1-\sigma p)\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \left( 1 - \left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p}\right) \\&\quad \le \frac{1}{(1-\sigma p)\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \left( 1 - \frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p}\\&\quad = \frac{1}{(1-\sigma p)\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p\left( \delta + (1-\delta )\frac{\lambda }{\lambda +1}(1-t)\right) ^{1-\sigma p}\\&\quad< \frac{1}{(1-\sigma p)\sigma p}\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta }\right) ^p \left( \delta + (1-\delta )(1-t)\right) ^{1-\sigma p}\\&\quad = \frac{(1-\delta )^p}{(1-\sigma p)\sigma p} \left( \delta + (1-\delta )(1-t)\right) ^{-p+(1-\sigma p)} < C(1-t)^{-p+(1-\sigma p)}. \end{aligned}$$

Simirlarly we calcualte for the third integral:

$$\begin{aligned} \begin{aligned}&\left( \frac{1}{t+\frac{1}{\lambda }}+\frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \int _0^{\frac{(1-\delta )(1+\lambda t)}{\lambda +1}} \int _{-x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}}^{-x+1} \frac{1}{s^{1+\sigma p}}\,ds\,dx \\&\quad = p\left( \left( t+\frac{1}{\lambda }\right) ^{-p}+\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p\right) \int _0^{\frac{(1-\delta )(1+\lambda t)}{\lambda +1}}\int _{-x+\frac{(1-\delta )(1+\lambda t)}{\lambda +1}}^{-x+1} \frac{1}{s^{1+\sigma p}}\,ds\,dx \\&\quad = \frac{1}{\sigma }\left( \left( t+\frac{1}{\lambda }\right) ^{-p}+\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p\right) \\&\qquad \int _0^{\frac{(1-\delta )(1+\lambda t)}{\lambda +1}} \left( \left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}-x\right) ^{-\sigma p} - \left( 1-x\right) ^{-\sigma p}\right) \,dx \\&\quad = \frac{1}{(1-\sigma p)\sigma }\left( \left( t+\frac{1}{\lambda }\right) ^{-p}+\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p\right) \\&\qquad \left( \left( 1-x\right) ^{1-\sigma p} - \left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}-x\right) ^{1-\sigma p}\right) _0^{\frac{(1-\delta )(1+\lambda t)}{\lambda +1}} \\&\quad = \frac{1}{(1-\sigma p)\sigma }\left( \left( t+\frac{1}{\lambda }\right) ^{-p}+\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p\right) \\&\qquad \left( \left( 1-\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p} - 1 + \left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p}\right) \\&\quad \le \frac{1}{(1-\sigma p)\sigma }\\&\qquad \left[ \left( t+\frac{1}{\lambda }\right) ^{-p}\left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p} +\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p\left( 1-\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p}\right] \\&\quad \le \frac{1}{(1-\sigma p)\sigma }\\&\qquad \left[ \left( t+\frac{1}{\lambda }\right) ^{-p}\left( \frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p} +\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p\left( \delta + (1-\delta )\frac{\lambda }{\lambda +1}(1-t)\right) ^{1-\sigma p}\right] \\&\quad< \frac{1}{(1-\sigma p)\sigma }\\&\qquad \left[ \left( t+\frac{1}{\lambda }\right) ^{-p}\left( \frac{1+\lambda t}{\lambda +1}\right) ^{1-\sigma p} +\left( \frac{1}{(1-t)(1-\delta ) + \delta }\right) ^p\left( \delta + (1-\delta )(1-t)\right) ^{1-\sigma p}\right] \\&\quad< \frac{1}{(1-\sigma p)\sigma }\left[ \left( t+\frac{1}{\lambda }\right) ^{-p+(1-\sigma p)} +\left( \delta + (1-\delta )(1-t)\right) ^{-p+(1-\sigma p)}\right] \\&\quad < C\left( t^{-p+(1-\sigma p)} +(1-t)^{-p+(1-\sigma p)}\right) \end{aligned} \end{aligned}$$

Finally the last integral can be bounded by:

$$\begin{aligned} \begin{aligned}&\left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \int _{\frac{(1-\delta )(1+\lambda t)}{\lambda +1}}^1 \int _{-x+1}^\infty \frac{1}{s^{1+\sigma p}}\,ds\,dx \\&\quad = \frac{1}{\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \int _{\frac{(1-\delta )(1+\lambda t)}{\lambda +1}}^1 (1-x)^{-\sigma p} \, dx \\&\quad =\frac{1}{(1-\sigma p)\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \left. (1-x)^{1-\sigma p}\right| _1^{\frac{(1-\delta )(1+\lambda t)}{\lambda +1}} \\&\quad =\frac{1}{(1-\sigma p)\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \left( 1-\frac{(1-\delta )(1+\lambda t)}{\lambda +1}\right) ^{1-\sigma p} \\&\quad =\frac{1}{(1-\sigma p)\sigma p} \left( \frac{1-\delta }{(1-t)(1-\delta ) + \delta (1+\frac{1}{\lambda })}\right) ^p \left( \delta + (1-\delta )\frac{\lambda }{\lambda +1}(1-t)\right) ^{1-\sigma p} \\&\quad<\frac{(1-\delta )^p}{(1-\sigma p)\sigma p} \left( \frac{1}{(1-t)(1-\delta ) + \delta }\right) ^p \left( \delta + (1-\delta )(1-t)\right) ^{1-\sigma p} \\&\quad =\frac{(1-\delta )^p}{(1-\sigma p)\sigma p} \left( \delta + (1-\delta )(1-t)\right) ^{-p+(1-\sigma p)} < C(1-t)^{-p+(1-\sigma p)}. \end{aligned} \end{aligned}$$

Overall we obtained

$$\begin{aligned} \Vert u'_t\Vert _{{\dot{W}}^{\sigma ,p}({\mathbb {R}})}< C\left( (1-t)^{-p+(1-\sigma p)} + t^{-p+(1-\sigma p)}\right) ^{1/p} < C\left( (1-t)^{-1+\frac{1-\sigma p}{p}}+ t^{-1+\frac{1-\sigma p}{p}}\right) \end{aligned}$$

where we used the fact that \((1+x)^\alpha < 1 + x^\alpha \) for \(x>0\) and \(\alpha \in (0,1)\).

We therefore have, using the fact that \(1-\sigma p >0\), that

$$\begin{aligned} \int _0^1 \Vert u'_t\Vert _{{\dot{W}}^{\sigma ,p}({\mathbb {R}})} \, dt \le C \int _0^1 C\left( (1-t)^{-1+\frac{1-\sigma p}{p}}+ t^{-1+\frac{1-\sigma p}{p}}\right) \,dt = 2C\frac{p}{1-\sigma p}, \end{aligned}$$

which is a bound independent of \(\lambda \) and \(\delta \).

Appendix B: Sobolev norms of radial functions

In this section we prove a technical lemma on Sobolev functions, which is used in Sect. 4.3.

Lemma B.1

Let \(n>1\), and define the operator \(T:C_c^\infty ((0,1))\rightarrow C_c^\infty (B_1({\mathbb {R}}^n))\) by

$$\begin{aligned} Tf(x) = f(|x|). \end{aligned}$$

Then for every \(s\ge 0\) and \(p\ge 1 \), we have

$$\begin{aligned} \Vert Tf\Vert _{W^{s,p}} \le C \Vert f\Vert _{W^{s,p}}, \end{aligned}$$

for some \(C=C(s,p,n)>0\) independent of f. That is, \(T:W^{s,p}_0(0,1) \rightarrow W^{s,p}_0(B_1({\mathbb {R}}^n))\) is a bounded operator for every \(s\ge 0\) and \(p\ge 1\).

Proof

Step I: integer Sobolev spaces We first prove the theorem for \(W^{k,p}\) norms, where k is an integer. For \(k=0\), moving to polar coordinates, we have

$$\begin{aligned} \Vert Tf\Vert _{L^p}^p = \int _{B_1({\mathbb {R}}^n)} |Tf(x)|^p \,dx = \omega _n \int _0^1 |f(r)|^p r^{n-1}\,dr \le \omega _n\, \Vert f\Vert _{L^p}^p, \end{aligned}$$

where \(\omega _n\) is the measure of the \((n-1)\)-dimensional unit sphere. For \(k=1\), we note that \(D(Tf)(x) = f'(|x|)\frac{x}{|x|}\), hence \(|D(Tf)(x)| = |f'(r)|\) and the estimate is similar. Differentiating further, we have for \(k=2\)

$$\begin{aligned} D^2(Tf)(x) = \left( f''(|x|) - \frac{f'(|x|)}{|x|}\right) \frac{x}{|x|}\otimes \frac{x}{|x|} + \frac{f'(|x|)}{|x|} {\text {Id}}, \end{aligned}$$

and for higher derivatives we obtain

$$\begin{aligned} D^k(Tf)(x) = \sum _{j=1}^k \frac{f^{(j)}(|x|)}{|x|^{k-j}} G_j^k\left( \frac{x}{|x|}\right) , \end{aligned}$$

where \(G_j^k\) are smooth k-tensor-valued functions on \(S^{n-1}\), which are independent of f.

In order to prove boundedness we need to prove that for \(j\le k\) we have that

$$\begin{aligned} \int _0^1 \left| \frac{f^{(j)}(r)}{r^{k-j}}\right| ^p\,r^{n-1}\,dr \le \int _0^1 \left| f^{(k)}(r)\right| ^p\, dr. \end{aligned}$$

This follows from Jensen’s inequality: For \(k=1\), we have

$$\begin{aligned} \begin{aligned} \int _0^1 \left| \frac{f'(r)}{r}\right| ^p r^{n-1} \,dr&= \int _0^1 \left| \frac{1}{r} \int _0^r f''(t)\,dt\right| ^p r^{n-1} \,dr \le \int _0^1 \left( \frac{1}{r} \int _0^r \left| f''(t)\right| ^p \,dt\right) r^{n-1} \,dr \\&= \int _0^1 \int _0^r \left| f''(t)\right| ^p \,dt \,r^{n-2} \,dr \le \int _0^1 \left| f''(t)\right| ^p \,dt \cdot \int _0^1 \,r^{n-2} \,dr \\&= \frac{1}{n-1} \int _0^1 \left| f''(t)\right| ^p \,dt. \end{aligned} \end{aligned}$$

For \(k=2\) we have

$$\begin{aligned} \begin{aligned} \int _0^1 \left| \frac{f'(r)}{r^2}\right| ^p r^{n-1} \,dr&= \int _0^1 \left| \frac{1}{r} \int _0^r \frac{1}{r} \int _0^t f^{(3)}(s)\,ds\, dt\right| ^p r^{n-1} \,dr \\&\le \int _0^1 \frac{1}{r} \int _0^r \left| \frac{1}{r} \int _0^t f^{(3)}(s)\,ds\right| ^p \, dt \, r^{n-1} \,dr \\&= \int _0^1 \frac{1}{r} \int _0^r \frac{t^p}{r^p}\left| \frac{1}{t} \int _0^t f^{(3)}(s)\,ds\right| ^p \, dt \, r^{n-1} \,dr \\&\le \int _0^1 \frac{1}{r} \int _0^r \frac{t^p}{r^p} \frac{1}{t} \int _0^t \left| f^{(3)}(s)\right| ^p \,ds \, dt \, r^{n-1} \,dr \\&\le \int _0^1 \left| f^{(3)}(s)\right| ^p \,ds \cdot \int _0^1 \frac{1}{r} \int _0^r \frac{t^p}{r^p} \frac{1}{t} \, dt \, r^{n-1} \,dr \\&= \frac{1}{p(n-1)} \int _0^1 \left| f^{(3)}(s)\right| ^p \,ds. \end{aligned} \end{aligned}$$

The result for higher values of k follows in a similar manner.

Step II: Interpolation Assume for now that \(s\in (0,1)\). Since \(B_1({\mathbb {R}}^n)\) is a convex set, we have that the \(W^{s,p}({\mathbb {R}}^n)\) norm on functions supported on \(B_1({\mathbb {R}}^n)\) (the Gagliardo/Slobodeckij norm) is equivalent to the norm of the real interpolation space

$$ \chi _0^{s,p}(B_1({\mathbb {R}}^n)) = (L^p(B_1({\mathbb {R}}^n)),W^{1,p}(B_1({\mathbb {R}}^n)))_{s,p}, $$

defined by

$$\begin{aligned} \Vert f\Vert _{\chi _0^{s,p}(B_1({\mathbb {R}}^n))}^p= & {} \int _0^\infty \left( \frac{K(t,f)}{t^s}\right) \,\frac{dt}{t} \qquad K(t,f)\\= & {} \inf _{g\in C_0^\infty (B_1({\mathbb {R}}^n))} \left( \Vert f-g\Vert _{L^p(B_1({\mathbb {R}}^n))} + t\Vert g\Vert _{W^{1,p}(B_1({\mathbb {R}}^n))}\right) . \end{aligned}$$

See [15, Theorem 4.7].Footnote 3 Since \(\chi _0^{s,p}(B_1({\mathbb {R}}^n))\) is an interpolation space, the map T is bounded as a map \(L^p([0,1])\rightarrow L^p(B_1({\mathbb {R}}^n))\) and as a map \(W_0^{1,p}([0,1])\rightarrow W_0^{1,p}(B_1({\mathbb {R}}^n))\) and thus is also bounded as a map between the corresponding interpolation spaces \(\chi _0^{s,p}([0,1])\rightarrow \chi _0^{s,p}(B_1({\mathbb {R}}^n))\) (see, e.g., [53, Section 2.3, Theorem 3]).

When \(s=k+\sigma \), the proof is similar: T is bounded as a map of between the interpolation spaces \(({\dot{W}}^{k,p}(0,1),{\dot{W}}^{k+1,p}(0,1))_{\sigma ,p}\rightarrow ({\dot{W}}^{k,p}(B_1({\mathbb {R}}^n)),{\dot{W}}^{k+1,p}(B_1({\mathbb {R}}^n)))_{\sigma ,p}\), since by the previous step it is bounded as maps on the interpolating spaces; and the norm on these interpolation spaces is equivalent to the \({\dot{W}}^{s,p}({\mathbb {R}}^n)\)-norm on \(C_0^\infty (B_1({\mathbb {R}}^n))\) functions, by the same results as for the \(k=0\) case. \(\square \)

Remark B.2

This lemma could probably be proven, at least for low values of k, by brute force evaluation of the Gagliardo seminorm, using the Funk–Hecke theorem (see, e.g., [29]).

An immediate corollary is the analogous result for vector fields, instead of functions:

Corollary B.3

Let \(n>1\), and define the operator \({\tilde{T}}:C_c^\infty ((0,1))\rightarrow C_c^\infty (B_1({\mathbb {R}}^n);{\mathbb {R}}^n)\) by

$$\begin{aligned} {\tilde{T}}f(x) = f(|x|)\frac{x}{|x|} \end{aligned}$$

Then for every \(s\ge 0\) and \(p\ge 1\), we have

$$\begin{aligned} \Vert {\tilde{T}}f\Vert _{W^{s,p}} \le C \Vert f\Vert _{W^{s,p}}, \end{aligned}$$

for some \(C=C(s,p,n)>0\) independent of f. That is, \({\tilde{T}}:W^{s,p}_0(0,1) \rightarrow W^{s,p}_0(B_1({\mathbb {R}}^n);{\mathbb {R}}^n)\) is a bounded operator for any \(s\ge 0\) and \(p\ge 1\).

Proof

Let \(F\in C_c^\infty ((0,1))\) be an antiderivative of f. Then the corollary follows from Lemma B.1 since \({\tilde{T}}f = D(TF)\). \(\square \)

Appendix C: Diameter and displacement energy

In this section we prove a general result relating bounded displacement energy and bounded diameter, inspired by previous results relating zero displacement energy and vanishing geodesic distance [9, 23, 54]. However, as shown below, compared with the vanishing case we need stronger assumptions on the norms involved, assumptions which are too restrictive to the applications in this paper; therefore we used other means to prove boundedness of the diameter.

Let G be a (possibly infinite dimensional) manifold and topological group with neutral element e, Lie algebra \({\mathfrak {g}}=T_eG\), and left and right translations L and R given by

$$\begin{aligned} g_1 g_2= L_{g_1}(g_2)=R_{g_2}(g_1),\quad \forall g_1,g_2\in G. \end{aligned}$$
(C.1)

Assume for each \(g\in G\) that \(R_g:G\rightarrow G\) is smooth, and let \(\Vert \cdot \Vert \) be a norm on the Lie algebra \({\mathfrak {g}}\). This gives rise to the following right-invariant Riemannian metric on G:

$$\begin{aligned} \Vert h \Vert _g = \Vert TR_{g^{-1}}h\Vert ,\quad \forall g\in G,\quad \forall h\in T_g G. \end{aligned}$$
(C.2)

The corresponding geodesic distance function is defined as

$$\begin{aligned} {\text {dist}}(g_1,g_2)={{\text {inf}}} \int _0^1 \Vert \partial _t g(t)\Vert _{g(t)} dt,\quad \forall g_1,g_2\in G, \end{aligned}$$
(C.3)

where the infimum is taken over all smooth paths in G with \(g(0)=g_1\) and \(g(1)=g_2\).

Theorem C.1

Let G be as above. Assume that

  1. 1.

    Any transformation g can be written as a product \(g=g_1g_2\) where both \(g_1\) and \(g_2\) are supported on a proper closed subset of M.

  2. 2.

    For any proper closed subset \(A\subset M\) the group \(G_A\subset G\) of all transformations that have support in A is uniformly perfect, i.e., any \(g\in G_A\) can be written as a product of n commutators, where n is independent of \(g\in G\).

  3. 3.

    The geodesic distance to a commutator of g and h is uniformly controlled by the minimum of the distances to g and h, i.e.,

    $$\begin{aligned} {\text {dist}}(e,[g,h])={\text {dist}}(g\circ h,h\circ g) \le C {\text {min}}( {\text {dist}}(e,g),{\text {dist}}(e,h)),\quad \forall g,h \in G, \end{aligned}$$
    (C.4)

    where C is independent of both g and h.Footnote 4

  4. 4.

    The displacement energy is globally bounded, i.e., for any proper closed subset \(A\subset M\) we have

    $$\begin{aligned} E(A)=\inf \left\{ {\text {dist}}(e,g):g\in G, g(A)\cap A=\emptyset \right\} \le D \end{aligned}$$
    (C.5)

    where D is independent of the set A.

Then the diameter of the group G is bounded.

Proof

Using Assumption 1 and the right invariance of the geodesic distance we can reduce the boundedness of the diameter to consider only transformations that are supported on a proper closed subset of M, since

$$\begin{aligned} {\text {dist}}(e,g)&= {\text {dist}}(e,g_1g_2) = {\text {dist}}(g_2^{-1},g_1)\le {\text {dist}}(g_2^{-1},e)+{\text {dist}}(e,g_1) \nonumber \\&={\text {dist}}(e,g_2)+{\text {dist}}(e,g_1), \end{aligned}$$
(C.6)

where both \(g_1\) and \(g_2\) are supported in a proper subset of M.

Thus it remains to proof the boundedness of the distance from the identity to any transformation g with support in a proper closed subset A. Using Assumption 2 we write any \(g_1=[h_1,h_2][h_3,h_4]\cdots [h_{2n-1},h_{2n}]\) with \(h_i \in G_A\). By the same argument as above we obtain

$$\begin{aligned} {\text {dist}}(e,g_1) \le \sum _{i=1}^n {\text {dist}}(e,[h_{2i-1},h_{2i-1}]). \end{aligned}$$
(C.7)

To bound the distance from the identity to a commutator of transformations with support in A we proceed as in [9, Theorem 1] and use Assumption 3 to obtain

$$\begin{aligned} {\text {dist}}(e,[h_{2i-1},h_{2i-1}]) \le (1+C)^2 E(A). \end{aligned}$$
(C.8)

Putting all of this together we have for each \(g\in G\) that

$$\begin{aligned} {\text {dist}}(e,g)\le 2n(1+C)^2 E(A) \end{aligned}$$
(C.9)

and using assumption 4 and the triangle inequality this yields

$$\begin{aligned} {\text {dist}}(g,h)\le 4 n(1+C)^2 D \end{aligned}$$
(C.10)

for any \(g,h\in G\). \(\square \)

Let now \(M=S^n\) and let \(G={\text {Diff}}(S^n)\). Then Assumptions 1 and 2 are satisfied [17, 61]. Assumption 4 is satisfied for \(W^{s,p}\)-metrics of low enough order, see Proposition 4.9. In the following we will however show that already in the case \(s=1\) and \(n=1\) condition 3 is to restrictive for our purposes as, e.g., the \(\dot{H}^1\) metric on \({\text {Diff}}(S^1)\), which corresponds to bounded diameter, does not satisfy it:

Lemma C.2

There exist sequences \(\psi _n,\varphi _n \in {\text {Diff}}(S^1)\) such that \({\text {dist}}_{\dot{H}^1}(\varphi _n \circ \psi _n,\psi _n\circ \varphi _n) \rightarrow \pi /2\) but \({\text {dist}}_{\dot{H}^1}({\text {Id}},\varphi _n) \rightarrow 0\).

Proof

By the analysis of Lenells [42] we have an explicit formula for the geodesic distance of the homogeneous \(\dot{H}^1\)-metric given by:

$$\begin{aligned} {\text {dist}}_{1,2}(\psi ,\varphi )= \arccos \left( \int _{0}^1 \sqrt{\psi '}\sqrt{\varphi '} d\theta \right) \end{aligned}$$
(C.11)

Now define the functions

$$\begin{aligned} \varphi _n:\; {\left\{ \begin{array}{ll} 0 &{} 0 \le \theta \le \frac{1}{n} \\ 2x &{} \frac{1}{n} \le \theta \le \frac{2}{n} \\ x &{} \frac{2}{n} \le \theta \le 1 \end{array}\right. }\quad \psi _n:\; {\left\{ \begin{array}{ll} nx &{} 0 \le \theta \le \frac{1}{n} \\ 1 &{} \frac{1}{n} \le \theta \le 1 \end{array}\right. } \end{aligned}$$
(C.12)

The functions \(\varphi _n\) and \(\psi _n\) are not diffeomorphisms, but we can smooth them with an arbitrarily small change to the \({\dot{H}}^1\) distances considered. The claim now follows by a straightforward calculation. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, M., Maor, C. Can we run to infinity? The diameter of the diffeomorphism group with respect to right-invariant Sobolev metrics. Calc. Var. 60, 54 (2021). https://doi.org/10.1007/s00526-021-01918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01918-6

Mathematics Subject Classification

Navigation