Skip to main content
Log in

Sharp Bohr Radius Constants for Certain Analytic Functions

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The Bohr radius for a class \({\mathcal {G}}\) consisting of analytic functions \(f(z)=\sum _{n=0}^{\infty }a_nz^n\) in unit disc \({\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1\}\) is the largest \(r^*\) such that every function f in the class \({\mathcal {G}}\) satisfies the inequality

$$\begin{aligned} d\left( \sum _{n=0}^{\infty }|a_nz^n|, |f(0)|\right) = \sum _{n=1}^{\infty }|a_nz^n|\le d(f(0), \partial f({\mathbb {D}})) \end{aligned}$$

for all \(|z|=r \le r^*\), where d is the Euclidean distance. In this paper, our aim is to determine the Bohr radius for the classes of analytic functions f satisfying differential subordination relations \(zf'(z)/f(z) \prec h(z)\) and \(f(z)+\beta z f'(z)+\gamma z^2 f''(z)\prec h(z)\), where h is the Janowski function. Analogous results are obtained for the classes of \(\alpha \)-convex functions and typically real functions, respectively. All obtained results are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dixon, P.G.: Banach algebras satisfying the non-unital von Neumann inequality. Bull. Lond. Math. Soc. 27(4), 359–362 (1995)

    Article  MathSciNet  Google Scholar 

  2. Ma, W. C., Minda, D.: A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin), 157–169 (1992), Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge

  3. Janowski, W.: Some extremal problems for certain families of analytic functions I. Ann. Polon. Math. 28, 297–326 (1973)

    Article  MathSciNet  Google Scholar 

  4. Janowski, W.: Extremal problems for a family of functions with positive real part and for some related families. Ann. Polon. Math. 23, 159–177 (1970)

    Article  MathSciNet  Google Scholar 

  5. Robertson, M.I.S.: On the theory of univalent functions. Ann. Math. 37(2), 374–408 (1936)

    Article  MathSciNet  Google Scholar 

  6. MacGregor, T.H.: The radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 14, 514–520 (1963)

    Article  MathSciNet  Google Scholar 

  7. Bohr, H.: A theorem concerning power series. Proc. Lond. Math. Soc. 2(13), 1–5 (1914)

    Article  MathSciNet  Google Scholar 

  8. Paulsen, V.I., Popescu, G., Singh, D.: On Bohr’s inequality. Proc. Lond. Math. Soc. 85(2), 493–512 (2002)

    Article  MathSciNet  Google Scholar 

  9. Paulsen, V.I., Singh, D.: Bohr’s inequality for uniform algebras. Proc. Am. Math. Soc. 132(12), 3577–3579 (2004)

    Article  MathSciNet  Google Scholar 

  10. Paulsen, V.I., Singh, D.: Extensions of Bohr’s inequality. Bull. Lond. Math. Soc. 38(6), 991–999 (2006)

    Article  MathSciNet  Google Scholar 

  11. Ali, R.M., Barnard, R.W., Solynin, AYu.: A note on Bohr’s phenomenon for power series. J. Math. Anal. Appl. 449(1), 154–167 (2017)

    Article  MathSciNet  Google Scholar 

  12. Kayumov, I.R., Ponnusamy, S.: Improved version of Bohr’s inequality. C. R. Math. 356(3), 272–277 (2018)

    Article  MathSciNet  Google Scholar 

  13. Alkhaleefah, S.A., Kayumov, I.R., Ponnusamy, S.: On the Bohr inequality with a fixed zero coefficient. Proc. Am. Math. Soc. 147(12), 5263–5274 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ali, R.M., Ng, Z.C.: The Bohr inequality in the hyperbolic plane. Complex Var. Elliptic Equ. 63(11), 1539–1557 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ali, R.M., Jain, N.K., Ravichandran, V.: Bohr radius for classes of analytic functions. Results Math. 74(4), 179 (2019)

    Article  MathSciNet  Google Scholar 

  16. Liu, Z., Ponnusamy, S.: Bohr radius for subordination and \(K\)-quasiconformal harmonic mappings. Bull. Malays. Math. Sci. Soc. 42(5), 2151–2168 (2019)

    Article  MathSciNet  Google Scholar 

  17. Abu-Muhanna, Y., Ali, R.M., Lee, S.K.: The Bohr operator on analytic functions and sections. J. Math. Anal. Appl. 496, 124837 (2021)

    Article  MathSciNet  Google Scholar 

  18. Kayumov, I.R., Ponnusamy, S.: On a powered Bohr inequality. Ann. Acad. Sci. Fenn. Math. 44(1), 301–310 (2019)

    Article  MathSciNet  Google Scholar 

  19. Abu-Muhanna, Y., Ali, R.M., Ponnusamy, S.: On the Bohr inequality, in Progress in approximation theory and applicable complex analysis. Springer Optim. Appl. 117, 265–295 (2016)

    Google Scholar 

  20. Lee, S.K., Khatter, K., Ravichandran, V.: Radius of starlikeness for classes of analytic functions. Bull. Malays. Math. Sci. Soc. 43(6), 4469–4493 (2020)

    Article  MathSciNet  Google Scholar 

  21. Madaan, V., Kumar, A., Ravichandran, V.: Radii of starlikeness and convexity of some entire functions. Bull. Malays. Math. Sci. Soc. 43(6), 4335–4359 (2020)

    Article  MathSciNet  Google Scholar 

  22. Aouf, M.K.: On a class of \(p\)-valent starlike functions of order \(\alpha \). Int. J. Math. Math. Sci. 10(4), 733–744 (1987)

    Article  MathSciNet  Google Scholar 

  23. Bhowmik, B., Das, N.: Bohr phenomenon for subordinating families of certain univalent functions. J. Math. Anal. Appl. 462(2), 1087–1098 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ahuja, O.P., Anand, S., Jain, N.K.: Bohr radius problems for some classes of analytic functions using quantum calculus approach. Mathematics 8, 623 (2020)

    Article  Google Scholar 

  25. Gao, C.Y., Zhou, S.Q.: Certain subclass of starlike functions. Appl. Math. Comput. 187(1), 176–182 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Srivastava, H.M., Răducanu, D., Zaprawa, P.: A certain subclass of analytic functions defined by means of differential subordination. Filomat 30(14), 3743–3757 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yang, D. G., Liu, J. L.: A class of analytic functions with missing coefficients, Abstr. Appl. Anal., Art. ID 456729, 16 pp (2011)

  28. Ruscheweyh, S.: New criteria for univalent functions. Proc. Am. Math. Soc. 49, 109–115 (1975)

    Article  MathSciNet  Google Scholar 

  29. Jain, N.K., Yadav, S.: Bohr radius for certain analytic functions. In: Deo, N., Gupta, V., Acu, A., Agrawal, P. (eds.) Mathematical Analysis I: Approximation Theory. ICRAPAM 2018. Springer Proceedings in Mathematics and Statistics, pp. 211–221. Springer, Singapore (2020)

    Google Scholar 

  30. Abu-Muhanna, Y., Ali, R.M., Ng, Z.C., Siti, M.F.: Bohr radius for subordinating families of analytic functions and bounded harmonic mappings. J. Math. Anal. Appl. 420(1), 124–136 (2014)

    Article  MathSciNet  Google Scholar 

  31. Mocanu, P.T.: Une propriété de convexité généralisée dans la théorie de la représentation conforme. Mathematica (Cluj) 34(11), 127–133 (1969)

    MATH  Google Scholar 

  32. Goodman, A.W.: Univalent Functions, vol. I. Mariner Publishing Co., Inc, Tampa (1983)

    MATH  Google Scholar 

  33. Kulshrestha, P.K.: Coefficient problem for alpha-convex univalent functions. Arch. Ration. Mech. Anal. 54, 205–211 (1974)

    Article  MathSciNet  Google Scholar 

  34. Rogosinski, W.: Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen. Math. Z. 35(1), 93–121 (1932)

    Article  MathSciNet  Google Scholar 

  35. Remizova, M.P.: Extremal problems in the class of typically real functions. Izv. Vysš. Učebn. Zaved. Matematika 32(1), 135–144 (1963)

    MathSciNet  MATH  Google Scholar 

  36. Brannan, D.A., Kirwan, W.E.: A covering theorem for typically real functions. Glasg. Math. J. 10, 153–155 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their helpful suggestions and insights that helped to improve quality and clarity of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Jain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Ravichandran.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Jain, N.K. & Kumar, S. Sharp Bohr Radius Constants for Certain Analytic Functions. Bull. Malays. Math. Sci. Soc. 44, 1771–1785 (2021). https://doi.org/10.1007/s40840-020-01071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-01071-x

Keywords

Mathematics Subject Classification

Navigation