Skip to main content
Log in

A New Comparative Evaluation for the Rheological and Filtration Properties of Water-Based Drilling Fluids Utilizing Sodium Salt of Linear and Cross-Linked Acrylate Polymer Hydrogels

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Currently, polymers were applied as the most functional additives for optimizing the rheological behavior and filtrate volume control of water-based drilling fluids. To affirm this concept, the present work aims to prepare sodium salt of linear polyacrylic acid (NaLPAA), polyacrylamide (NaLPAM) and their cross-linked polymer hydrogels (NaCPAA and NaCPAM), in different ratios using N,N′-methylenebis(acrylamide), as a cross-linker, potassium persulfate and ascorbic acid as initiators. FTIR characteristic spectra, 1H NMR analysis, SEM micrographs and elemental analysis for the formed gels were employed to emphasize their consistence. TGA and TGA-DTG thermo-grams displayed that NaCPAA polymer hydrogel offered the highest thermal stability behavior. The swelling behavior of the prepared hydrogels was examined and demonstrated that CPAM showed the best behavior at pH = 4 (acidic medium). The rheological properties of the investigated water-based mud samples were studied at various temperatures. For sample containing 0.57% (2 g) of NaCPAA at ambient temperature, it showed the highest rheological behavior in which AV achieved the highest value at 118 cP, PV was recorded at 69 cP, and YP was detected at 99 lbf/100 ft2. At LTLP conditions, sample containing 0.57% of XC-polymer and 2.86% bentonite in its composition offered the most enhanced mud cake thickness at 4.2 mm. At HTHP conditions, the filtrate volume of sample containing 0.29% NaLPAA was detected at 35 mL and for sample containing 0.57% was calculated at 22 mL. In addition, the modified mud samples with the same recipe of NaLPAA and NaCPAA at different applied temperatures showed moderate rheological properties compared to the commercial XC-Polymer. Furthermore, NaCPAA manifested a reduction in the swelling properties of water-based mud system containing high amount of API bentonite (2.85%, 10 g) in which AV and PV were calculated at 30 and 17 cP, respectively. In addition, YP was recorded at 22 lbf/100ft2. So, it could be used as a thinner for water-based bentonite mud systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bageri, B.S.; Benaafi, M.; Mahmoud, M.; Mohamed, A.; Patil, S.; Elkatatny, S.: Effect of formation cutting’s mechanical properties on drilling fluid properties during drilling operations. Arab. J. Sci. Eng. 45, 7763–7772 (2020)

    Article  Google Scholar 

  2. Watson, R.B.; Viste, P.; Lauritzen, J.R.; The Influence of Fluid Loss Additives in High-Temperature Reservoirs, SPE International Symposium and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA, 15–17 February (2012).

  3. Elkatatny, S.: Enhancing the Rheological Properties of Water-Based Drilling Fluid Using Micronized Starch. Arab. J. Sci. Eng. 44, 5433–5442 (2019)

    Article  Google Scholar 

  4. Mohammed, W.; Hossain, M.E.: Development of an environmentally-friendly water-based mud system using natural materials. Arab. J. Sci. Eng. 43, 2501–2513 (2018)

    Article  Google Scholar 

  5. Jha, P.K.; Mahto, V.; Saxena, V.K.: Study the Effects of Xanthan Gum and Aluminium Stearate on the Properties of Oil-in-Water Emulsion Drilling Fluids. Arab. J. Sci. Eng. 41, 143–153 (2016)

    Article  Google Scholar 

  6. Coussot, P.; Bertrand, F.; Herzhaft, B.: Rheological behavior of drilling muds, characterization using Mri visualization. Oil Gas Sci. Technol. 59, 23–29 (2004)

    Article  Google Scholar 

  7. Elkatatny, S.; Mahmoud, M.: Investigating the compatibility of enzyme with chelating agents for calcium carbonate filter cake removal. Arab. J. Sci. Eng. 43, 2309–2318 (2018)

    Article  Google Scholar 

  8. Vipulanandan, C.; Mohammed, A.: Effect of drilling mud bentonite contents on the fluid loss and filter cake formation on a field clay soil formation compared to the API fluid loss method and characterized using Vipulanandan models. J. Petrol. Sci. Eng. 189, 107029 (2020)

    Article  Google Scholar 

  9. Shafeeg, O.B.; Fattah, K.A.: The Influence of XC-Polymer on Drilling Fluid Filter Cake Properties and Formation Damage. J. Pet. Environ. Biotechnol. 4, 1–10 (2013)

    Google Scholar 

  10. Agwu, O.E.; Akpabio, J.U.: Using agro-waste materials as possible filter loss control agents in drilling muds: A review. J. Petrol. Sci. Eng. 163, 185–198 (2018)

    Article  Google Scholar 

  11. Kelessidis, V.C.; Poulakakis, E.; Chatzistamou, V.: Use of Carbopol 980 and carboxymethyl cellulose polymers as rheology modifiers of sodium-bentonite water dispersions. Appl. Clay Sci. 54, 63–69 (2011)

    Article  Google Scholar 

  12. Luheng, Q.: The application of polymer mud system in drilling engineering. Procedia. Eng. 73, 230–236 (2014)

    Article  Google Scholar 

  13. Aly, H.M.; Abd El-Mohdy, H.L.: Functional Modification of Poly Vinyl Alcohol/Acrylic Acid Hydrogels Prepared by γ-Radiation Through Some Amine Compounds. Arab. J. Sci. Eng. 41, 2199–2209 (2016)

    Article  Google Scholar 

  14. Grattoni, C.A.; Al-Sharji, H.H.; Yang, C.; Muggeridge, A.H.; Zimmerman, R.W.: Rheology and permeability of crosslinked polyacrylamide gel. J. Colloid. Interface. Sci. 240, 601–607 (2011)

    Article  Google Scholar 

  15. Preparation and Antibacterial Evaluation: Ahmed, Abd-EIShafey. I.; Hydrogels for Water Filters. J. Appl. Polym. Sci. 122, 1162–1167 (2011)

    Google Scholar 

  16. Mahon, R.; Balogun, Y.; Oluyemi, G.; Njuguna, J.: Swelling performance of sodium polyacrylate and poly(acrylamide-co-acrylic acid) potassium salt. SN App. Sci. 2, 117 (2020)

    Article  Google Scholar 

  17. Tang, L.; Gong, L.; Zhou, G.; Liu, L.; Zhang, D.; Tang, J.; Zheng, J.: Design of low temperature-responsive hydrogels used as a temperature indicator. Polymers 173, 182–189 (2019)

    Article  Google Scholar 

  18. Breeden, D. L.; Gordon, S.; Water-based drilling fluids containing crosslinked polyacrylic acid. US Patent no. US20140135238A1, (2014).

  19. Al-Yasiri, M.; Awad, A.; Pervaiz, S.; Wen, D.: Influence of silica nanoparticles on the functionality of water-based drilling fluids. J. Petrol. Sci. Eng. 179, 504–512 (2019)

    Article  Google Scholar 

  20. Mohamadian, N.; Ghorbani, H.; Wood, D. A.; Khoshmardan, M. A.; A hybrid nanocomposite of poly(styrene-methyl methacrylate- acrylic acid) /clay as a novel rheology-improvement additive for drilling fluids. J. Polym. Res. 26 (2019).

  21. Jain, R., et al.: Evaluation of polyacrylamide-grafted-polyethylene glycol/silica nanocomposite as potential additive in water based drilling mud for reactive shale formation. J. Nat. Gas Sci. Eng. 26, 526–537 (2015)

    Article  Google Scholar 

  22. Medhi, S.; Chowdhury, S.; Gupta, D.K.; Mazumdar, A.: An investigation on the effects of silica and copper oxide nanoparticles on rheological and fluid loss property of drilling fluids. J. Petrol. Explor. Prod. Technol. 10, 91–101 (2020)

    Article  Google Scholar 

  23. Hussien, R.A.; Donia, A.M.; Atia, A.A.; El-sedfy, O.F.; Abdel-Hamid, A.R.; Rashad, R.T.: Studying some hydro-physical properties of two soils amended with kaolinite-modified cross-linked poly-acrylamides. CATENA 92, 172–178 (2012)

    Article  Google Scholar 

  24. Jordan, J.; Edmund, F.; Bennett, R.; Shuman, A.C.; Wrigley, A.N.: J. Polym. Sci. A Polym. Chem. 8, 3113–3121 (1970)

    Article  Google Scholar 

  25. Klumperman, B.: Interpreting the copolymerization of styrene with maleic anhydride and with methyl methacrylate in terms of the bootstrap model. Polymer 34, 1032–1037 (1993)

    Article  Google Scholar 

  26. Ponratnam, S.K.; Sham, L.: Reactivity ratios of ionizing monomers in aqueous solution Copolymerization of acrylic and methacrylic acids with acrylamide. Macromol. Chem. Phys. 178, 1029–1038 (1977)

    Article  Google Scholar 

  27. Liu, P.-S.; Li, L.; Zhou, N.-L.; Zhang, J.; Wei, S.-H.; Shen, J.: Synthesis and properties of a poly(acrylic acid)/montmorillonite superabsorbent nanocomposite. J. Appl. Polym. Sci. 102, 5725–5730 (2006)

    Article  Google Scholar 

  28. Fernández-Barbero, A.; Suárez, I.J.; Sierra-Martín, B.; Fernández-Nieves, A.; De las Nieves, F.J.; Rubio-Retama, M. J.; López-Cabarcos, E.: Gels and microgels for nanotechnological applications. Adv. Colloid. Interface. Sci. 147, 88–108 (2009).

  29. Abdou, M.I.; Al-Sabagh, A.M.; Ahmed, H.E.S.; Fadl, A.M.: Impact of barite and ilmenite mixture on enhancing the drilling mud weight Egypt. J. Pet. 27, 955–967 (2018)

    Google Scholar 

  30. Kamoun, E.A.; Chen, X.; MohyEldin, M.S.; Kenawy, E.S.: Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab. J. Chem. 8, 1–14 (2015)

    Article  Google Scholar 

  31. Kavanagh, G.M.; Ross-Murphy, S.B.: Rheological characterisation of polymer gels. Prog. Polym. Sci. 23, 533–562 (1998)

    Article  Google Scholar 

  32. Argillier, J.F.; Audibert, A.; Lecourtier, J.; Moan, M.; Rousseau, L.: Solution and adsorption properties of hydrophobically associating water-soluble polyacrylamides. Colloid. Surf. A: Physicochem. Eng. Asp. 113, 247–257 (1996)

    Article  Google Scholar 

  33. Mahto, V.; Sharma, V.P.: Rheological study of a water based oil well drilling fluid. J. Pet. Sci. Eng. 45, 123–128 (2004)

    Article  Google Scholar 

  34. Cristescu, C.; Materials with rheological properties: calculation of structures. Hand Book, pp. 28–34 (2008).

  35. Abdou, M.I.; Al-Sabagh, A.M.; Dardir, M.M.: Evaluation of Egyptian bentonite and nano-bentonite as drilling mud. Egypt. J. Pet. 22, 53–59 (2013)

    Article  Google Scholar 

  36. Ahmed, E.M.: Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6, 105–121 (2015)

    Article  Google Scholar 

  37. Melekaslan, D.; Okay, O.: Swelling of strong polyelectrolyte hydrogels in polymer solutions: effect of ion pair formation on the polymer collapse. Polymer 41, 5737–5747 (2000)

    Article  Google Scholar 

  38. Reena, B.; Kumar, M.U.: Studies on water absorbency of polyacrylamide hydrogels. J. Mater. Sci. Eng. B. 5, 399–405 (2015)

    Google Scholar 

  39. Magalhães, A. S. G.; Neto, M. P. A.; Bezerra, M. N.; Ricardoe, N. M. P. S.; Feitosa, J. P. A.; Application of FTIR in the determination of acrylate content in poly(sodium acrylate-co-acrylamide) superabsorbent hydrogels. Quim. Nova, 35, 1464–1467 (2012).

  40. Garcia, H.; Barros, A.S.; Gonçalves, C.; Gama, F.M.; Gil, A.M.: Characterization of dextrin hydrogels by FTIR spectroscopy and solid state NMR spectroscopy. Europ. Polym. J. 44, 2318–2329 (2008)

    Article  Google Scholar 

  41. An Approach to Drug Delivery: Ray, Debajyoti.; Mohanta, Guru.; Manavalan, Prasad R.; Sahoo, Prafulla Kumar.; Synthesis and Characterization of Acrylic Based Copolymeric Hydrogel Nanoparticles. Int. J. Chem. Tech. Res. 1, 627–633 (2009)

    Google Scholar 

  42. Mohapatra, R.; Swain, A.K.; Mohapatra, R.; Rana, P.K.; Sahoo, P.K.: Poly(2-Hydroxy Ethyl Methacrylate-co-Acrylic Acid) as Novel Biodegradable Macroporous Hydrogel. Polym. Polym. Compos. 13, 807–814 (2005)

    Google Scholar 

  43. Zhou, G.Y.; Luo, J.M.; Liu, C.B.; Chu, L.; Ma, J.H.; Tang, Y.H.; Zeng, Z.B.; Luo, S.L.: A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent. Water Res. 89, 151–160 (2016)

    Article  Google Scholar 

  44. Chenga, W.-M.; Hu, X.-M.; Zhao, Y.-Y.; Wu, M.-Y.; Hu, Z.-X.; Yu, X.-T.: Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels. e-Polymers 17, 95–106 (2017)

    Article  Google Scholar 

  45. Bao, Y.; Ma, J.; Li, N.: Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd. Polym. 84, 76–82 (2011)

    Article  Google Scholar 

  46. Zhang, J.; Liu, R.; Li, An.; Wang, A.: Preparation, swelling behaviors and application of polyacrylamide/attapulgite superabsorbent composites. Polym. Adv. Technol. 17, 12–19 (2006)

    Article  Google Scholar 

  47. Kelessidis, V.C.; Tsamantaki, C.; Dalamarinis, P.: Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Appl. Clay. Sci. 38, 86–96 (2007)

    Article  Google Scholar 

  48. Al, H.; Othman, C.S.: Synthesis and Characterization of a Novel Series of Cross-Linked (Phenol, Formaldehyde, Alkyldiamine) Terpolymers for the Removal of Toxic Metal Ions from Wastewater. Arab. J. Sci. Eng. 41, 119–133 (2016)

    Article  Google Scholar 

  49. YYEPG Team.; Drilling fluids processing, Hand Book, 1st Edition, Gulf Professional Publishing is an imprint of Elsevier. pp. 14–23 (2005).

  50. Adekomaya, O.A.; Olafuyi, O.: An experimental study of the effect of contaminants on the flow properties of oil based drilling mud. Petrol. Coal 53, 315–319 (2011)

    Google Scholar 

  51. Paiaman, A.M.; Ghassem, M.K.; Salmani, Al-Askari B.; Al-Anazi, B.D.; Masihi, M.; Effect of drilling fluid properties on rate of penetration. NAFTA 60, 129–134 (2009).

  52. Slavomir, O., Azar, J.J.: The Effects of Mud Rheology on Annular Hole Cleaning in Directional Wells, SPE-14178-PA, (1986).

  53. Badr, S.: Bageri, Abdulrauf Rasheed Adebayo, Jaber Al Jaberi, Shirish Patil, Effect of perlite particles on the filtration properties of high-density barite weighted water-based drilling fluid. Powd. Technol. 360, 1157–1166 (2020)

    Article  Google Scholar 

  54. Kok, M.V.; Alikaya, T.: Effect of polymers on the rheological properties of KCl/Polymer type drilling fluids. Energy Sources 27, 405–415 (2005)

    Article  Google Scholar 

  55. Bajalan, A.R.: An experimental study on the effect of Xanthan Gum polymer on the physical properties of WBM drilling fluid. Polytechnic J. 8, 22–33 (2018)

    Google Scholar 

  56. Patel, A. D.; Water-based drilling fluids with high temperature fluid loss control additive US patent no. US5789349A, (1996).

  57. Uhl, K.; Bannerman, J.K.; Engelhardt, F.J.; Patel, A.; Water soluble copolymers containing vinyl imidazole as drilling fluid additives. US patent no. US4471097A, (1982).

  58. Saboori, R.; Sabbaghi, S.; Kalantariasl, A.; Mowla, D.: Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core–shell nanocomposite. J. Petrol. Explor. Prod. Technol. 8, 445–454 (2018)

    Article  Google Scholar 

  59. Shafeeg O, B.; Fattah, K.A.: The Influence of XC-Polymer on Drilling Fluid Filter Cake Properties and Formation Damage. J Pet Environ Biotechnol. 4, 1000157 (2013)

    Google Scholar 

  60. Iscan, A.G.; Kok, M.V.: Effects of polymers and CMC concentration on rheological and fluid loss parameters of water-based drilling fluids. Energy Sources Part A. 29, 939–949 (2007)

    Article  Google Scholar 

  61. Mastalska-Popławska, J.; Izak, P.; Wójcik, Ł; Stempkowska, A.: Rheology of Cross-Linked Poly(Sodium Acrylate)/Sodium Silicate Hydrogels. Arab. J. Sci. Eng. 41, 2221–2228 (2016)

    Article  Google Scholar 

  62. Natkanski, P.; Piotr, K.; Anna, B.; Zofia, P.; Marek, M.: Controlled swelling and adsorption properties of polyacrylate/montmorillonite composites. Mater. Chem. Phys. 136, 1109–1115 (2012)

    Article  Google Scholar 

  63. Alonso, G.J.; Rivera, J.L.A.; Mendoza, A.M.M.; Mendez, M.L.H.: Effect of temperature and pH on swelling behavior of hydroxyethyl cellullose-acrylamide hydrogel. e-Polymers. 7, 1–9 (2007)

    Article  Google Scholar 

  64. Zareie, C.; Bahramian, A.R.; Sefti, M.V.; Salehi, M.B.: Network-gel strength relationship and performance improvement of polyacrylamide hydrogel using nano-silica; with regards to application in oil wells conditions. J. Mol. Liq. 278, 512–520 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fadl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadl, A.M., Abdou, M.I., Moustafa, H.Y. et al. A New Comparative Evaluation for the Rheological and Filtration Properties of Water-Based Drilling Fluids Utilizing Sodium Salt of Linear and Cross-Linked Acrylate Polymer Hydrogels. Arab J Sci Eng 46, 6989–7017 (2021). https://doi.org/10.1007/s13369-021-05399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05399-9

Keywords

Navigation