Skip to main content
Log in

Dielectric properties and thermally activated relaxation in monovalent (Li+1) doped multiferroic GdMnO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Temperature and frequency-dependent dielectric properties of 15% monovalent Li doped multiferroic GdMnO3 sample have been studied. A thermally activated relaxation with activation energy ~ 0.17 eV has been determined. An excellent fit of frequency dependent dielectric permittivity data with Curie-Von Schweidler’s function having n < 1 indicates that only Non-Debye relaxation is present in our sample. The frequency response of ac conductivity has been analyzed by using the Jonscher’s universal power law and signifies that motions of charge carriers are translational type. The temperature dependence of conductivity \(\sigma_{{{\text{dc}}}}\) and \(\sigma_{{{\text{ac}}}} (\omega )\) both follows Arrhenius law. An increase in conductivity with an increase in temperature suggests that electrical conductivity in the material is a thermally activated process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.K. Thakur, R. Thakur, S.S. Samatham, N. Kaurav, V. Ganesan et al., Dielectric, magnetic, and thermodynamic properties of Y1−xSrxMnO3 (x=0.1 and 0.2). J. Appl. Phys. 112, 104115 (2012)

    Article  ADS  Google Scholar 

  2. A. Modi, R.K. Thakur, R. Thakur, N.K. Gaur, Magnetic transport behavior of multiferroic GdMnO3. Adv Mater. Res. 1047, 151–154 (2014)

    Article  Google Scholar 

  3. T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett 92, 257201 (2004)

    Article  ADS  Google Scholar 

  4. A. Nandy, A. Roy Chowdhury, T. Kar, D. Das, S.K. Pradhan, , Effect of sodium doping on the microstructure, lattice distortion and magnetic properties of GdMnO3 tiny single crystals. RSC Adv. 6, 20609–20620 (2016)

    Article  ADS  Google Scholar 

  5. S. Samantaray, D.K. Mishra, S.K. Pradhan, P. Mishra, B.R. Sekhar, D. Behera, P.P. Rout, S.K. Das, D.R. Sahu, B.K. Roul, Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics. J. Magn. Magn. Mater. 339, 168–174 (2013)

    Article  ADS  Google Scholar 

  6. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature (London) 426, 55–58 (2003)

    Article  ADS  Google Scholar 

  7. G.J. Snyder, C.H. Booth, F. Bridges, R. Hiskes, S.D. Carolis, M.R. Beasley, T.H. Geballe, Local structure, transport, and rare-earth magnetism in the ferrimagnetic perovskite Gd0.67Ca0.33MnO3. Phys. Rev. B 55, 6453–6458 (1997)

    Article  ADS  Google Scholar 

  8. S. Biswas, M.H. Khan, S. Pal, E. Bose, The effects of Mn substitution on magnetization reversal properties in Gd0.7 Ca0.3 MnO3. J. Sup. Nov. Mag. 27, 463–468 (2014)

    Article  Google Scholar 

  9. W.S. Ferreira, J.A. Moreira, A. Almeida, M.R. Chaves, J.P. Araújo, J.B. Oliveira, J.M.M. da Silva, M.A. Sá, T.M. Mendonça, P.S. Carvalho, J. Kreisel, J.L. Ribeiro, L.G. Vieira, P.B. Tavares, S. Mendonça, Spin-phonon coupling and magnetoelectric properties: EuMnO3 versus GdMnO3. Phys. Rev. B 79, 054303 (2009)

    Article  ADS  Google Scholar 

  10. O. Peña, M. Bahout, K. Ghanimi, P. Duran, D. Gutierrez, C. Moure, Spin reversal and ferrimagnetism in (Gd, Ca) MnO3. J. Mater. Chem. 12, 2480 (2002)

    Article  Google Scholar 

  11. J. Oliveira, J.A. Moreira, A. Almeida, V.H. Rodrigues, M.M.R. Costa, P.B. Tavares, P. Bouvier, M. Guennou, J. Kreisel, Structural and insulator-to-metal phase transition at 50 GPa in GdMnO3. Phys. Rev. B 85, 05 (2012)

    Article  Google Scholar 

  12. F. Ye, H. Dai, M. Wang, J. Chen, T. Li, Z. Chen, , The structural, dielectric, and magnetic properties of GdMnO3 multiferroic ceramics. J. Mat. Sci.: Mat. Electron. 31, 3590–3597 (2020)

    Google Scholar 

  13. H. Dai, H. Liu, K. Peng, F. Ye, T. Li, J. Chen, Z. Chen, Effect of barium doping on the microstructure, dielectric and magnetic properties of GdMnO multiferroic ceramics. J. Mat. Sci.: Mat. Electron. 30, 2523–2529 (2019)

    Google Scholar 

  14. B.J. Prakash, K.N. Kumar, S. Buddhudu, Thermal, magnetic and electrical properties of multiferroic GdMnO3 nano particles by a co-precipitation method. Ferro. Lett. 39, 104–116 (2012)

    Article  Google Scholar 

  15. R. Sarkar, B. Sarkar, S. Pal, Monovalent (Li+1) doping effect in multiferroic GdMnO3. Bull. Mater. Sci. 43, 64 (2020)

    Article  Google Scholar 

  16. A. Bendahhou, K. Chourti, R. El Bouayadi, S. El Barkanya, M.A. Salama, Structural, dielectric and impedance spectroscopy analysis of Ba5CaTi1.94Zn0.66 Nb8O30 ferroelectric ceramic. RSC Adv. 10, 28007–28018 (2020)

    Article  ADS  Google Scholar 

  17. R. Long, Hopping Transport in Solids (North-Holland, Amsterdam, 1991).

    Google Scholar 

  18. C. Kittel, Introduction to Solid State Physics (Hoboken, New Jersey, 2004).

    MATH  Google Scholar 

  19. C.C. Wang, Y.M. Cui, L.W. Zhang, Dielectric properties of TbMnO3 ceramics. Appl Phys Lett 90, 012904 (2007)

    Article  ADS  Google Scholar 

  20. W. Wang, Epitaxial growth and in-plane dielectric properties of DyMnO3 by pulsed-laser deposition. Int. J. M. Phys. B. 33, 1950333 (2019)

    Article  ADS  Google Scholar 

  21. D. Singh, R. Gupta, K.K. Bamzai, Electrical and magnetic properties of GdCrxMn1−xO3 (x =0.0,0.1) multiferroic nanoparticles. J. Mater. Sci. 28, 5295–5307 (2017)

    Google Scholar 

  22. L.C. Costa, F. Henry, Dielectric universal law of lead silicate glasses doped with neodymium oxide. J. Non Cryst. Solids 353, 4380–4383 (2007)

    Article  ADS  Google Scholar 

  23. M.H. Khan, S. Pal, E. Bose, Frequency-dependent dielectric permittivity and electric modulus studies and an empirical scaling in (100-x) BaTiO3/(x)La0.7Ca0.3MnO3 composites. Appl .Phys. A. 118, 907–912 (2015)

    Article  ADS  Google Scholar 

  24. B. Lee, T. Moon, T.G. Kim, D.K. Choi, B. Park, Dielectric relaxation of atomic-layer-deposited HfO2 thin films from 1 kHz–5 GHz. Appl. Phys. Lett. 87, 1 (2005)

    Google Scholar 

  25. N. Shukla, V. Kumar, D.K. Dwivedi, Dependence of dielectric parameters and ac conductivity on frequency and temperature in bulk Se90Cd8Ln2 glassy alloy. J. Non Oxi. Glass 8, 47–57 (2016)

    Google Scholar 

  26. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1993).

    Google Scholar 

  27. K. Funke, Debye-Huckel-type relaxation processes in solid ionic conductors: the model. Solid State Ionics 18, 183–190 (1986)

    Article  Google Scholar 

  28. K. Funke, Jump relaxations in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  29. J. Izquierdo, G. Bolaños, V.H. Zapata, O. Moran, Dielectric relaxation and ac conduction in multiferroic TbMnO3 ceramics: Impedance spectroscopy analysis. Curr. Appl. Phys. 14, 1492–1497 (2014)

    Article  ADS  Google Scholar 

  30. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D. 32, R57 (1999)

    Article  ADS  Google Scholar 

  31. S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J. Adv. Cer. 2(3), 291–300 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

Author is thankful to acknowledge UGC-DAE-CSR Mumbai for financial assistance and UGC-DAE-CSR Kolkata for providing the instrumental facilities to conduct experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, R., Sarkar, B. & Pal, S. Dielectric properties and thermally activated relaxation in monovalent (Li+1) doped multiferroic GdMnO3. Appl. Phys. A 127, 177 (2021). https://doi.org/10.1007/s00339-021-04333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04333-y

Keywords

Navigation