Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Appraisal of the Role of In silico Methods in Pyrazole Based Drug Design

Author(s): Smriti Sharma* and Vinayak Bhatia*

Volume 21, Issue 2, 2021

Published on: 01 September, 2020

Page: [204 - 216] Pages: 13

DOI: 10.2174/1389557520666200901184146

Price: $65

Abstract

Pyrazole and its derivatives are a pharmacologically and significantly active scaffolds that have innumerable physiological and pharmacological activities. They can be very good targets for the discovery of novel anti-bacterial, anti-cancer, anti-inflammatory, anti-fungal, anti-tubercular, antiviral, antioxidant, antidepressant, anti-convulsant and neuroprotective drugs. This review focuses on the importance of in silico manipulations of pyrazole and its derivatives for medicinal chemistry. The authors have discussed currently available information on the use of computational techniques like molecular docking, structure-based virtual screening (SBVS), molecular dynamics (MD) simulations, quantitative structure activity relationship (QSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to drug design using pyrazole moieties. Pyrazole based drug design is mainly dependent on the integration of experimental and computational approaches. The authors feel that more studies need to be done to fully explore the pharmacological potential of the pyrazole moiety and in silico method can be of great help.

Keywords: Pyrazole, quantitative structure activity relationship (QSAR), molecular docking, pharmacological activities, drug design.

Graphical Abstract
[1]
Knorr, L. Action of ethyl acetoacetate on phenylhydrazine. Chem. Ber., 1883, 16, 2597-2599.
[http://dx.doi.org/10.1002/cber.188301602194]
[2]
Schmidt, A.; Dreger, A. Recent advances in the chemistry of pyrazoles. Properties, Biological Activities, and Syntheses, 2011, 15(9), 1423-1463.
[3]
Secrieru, A.; O’Neill, P.M.; Cristiano, M.L.S. Revisiting the Structure and Chemistry of 3(5)-Substituted Pyrazoles. Molecules, 2019, 25(1), 1-28.
[http://dx.doi.org/10.3390/molecules25010042] [PMID: 31877672]
[4]
Castaneda, J.P.; Denisov, G.S.; Kucherov, S.Y.; Schreiber, V.M.; Shurukhina, A.V. Infrared and ab initio studies of hydrogen bonding and proton transfer in the complexes formed by pyrazoles. J. Mol. Struct., 2003, 660, 25-40.
[http://dx.doi.org/10.1016/j.molstruc.2003.07.010]
[5]
Pérez, J.; Riera, L. Pyrazole complexes and supramolecular chemistry. Eur. J. Inorg. Chem., 2009, 4913-4925.
[http://dx.doi.org/10.1002/ejic.200900694]
[6]
Claramunt, R.M.; Cornago, P.; Torres, V.; Pinilla, E.; Torres, M.R.; Samat, A.; Lokshin, V.; Valés, M.; Elguero, J. The structure of pyrazoles in the solid state: a combined CPMAS, NMR, and crystallographic study. J. Org. Chem., 2006, 71(18), 6881-6891.
[http://dx.doi.org/10.1021/jo0609935] [PMID: 16930041]
[7]
de la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules, 2020, 25(3), 1-13.
[http://dx.doi.org/10.3390/molecules25030745] [PMID: 32050446]
[8]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[9]
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[10]
Channar, P.A.; Saeed, A.; Larik, F.A.; Batool, B.; Kalsoom, S.; Hasan, M.M.; Erben, M.F.; El-Seedi, H.R.; Ali, M.; Ashraf, Z. Synthesis of aryl pyrazole via Suzuki coupling reaction, in vitro mushroom tyrosinase enzyme inhibition assay and in silico comparative molecular docking analysis with Kojic acid. Bioorg. Chem., 2018, 79, 293-300.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.026] [PMID: 29793142]
[11]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, 2018, 23(1), 134.
[12]
Han, Y.T.; Kim, K.; Choi, G.I.; An, H.; Son, D.; Kim, H.; Ha, H.J.; Son, J.H.; Chung, S.J.; Park, H.J.; Lee, J.; Suh, Y.G. Pyrazole-5-carboxamides, novel inhibitors of receptor for advanced glycation end products (RAGE). Eur. J. Med. Chem., 2014, 79, 128-142.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.072] [PMID: 24727489]
[13]
Liang, J.T.; Mani, N.S.; Jones, T.K. Design of concise, scalable route to a cholecystokinin 1 (CCK 1) receptor antagonist, 2007, 1,8243-8250..
[http://dx.doi.org/10.1021/jo071166m]
[14]
Bonesi, M.; Loizzo, M.R.; Statti, G.A.; Michel, S.; Tillequin, F.; Menichini, F. The synthesis and angiotensin converting enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(6), 1990-1993.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.113] [PMID: 20167484]
[15]
Surendra Kumar, R.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci., 2016, 23(5), 614-620.
[http://dx.doi.org/10.1016/j.sjbs.2015.07.005] [PMID: 27579011]
[16]
Saleh, N. M.; El-gazzar, M. G.; Aly, H. M.; Othman, R. A. Novel Anticancer Fused Pyrazole Derivatives as EGFR and VEGFR-2 Dual TK Inhibitors 2020, 7, 1-12.,
[http://dx.doi.org/ 10.3389/fchem.2019.00917]
[17]
Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl - pyrazole derivatives as anticancer agents; BMC Chem, 2019, pp. 1-13.
[18]
Zhang, C.; Liu, X.; Wang, S.; Li, Z. .Synthesis and Antifungal Activities of New Pyrazole Derivatives via 1 , 3-dipolar Cycloaddition Reaction 2010, 489-493..
[http://dx.doi.org/10.1111/j.1747-0285.2010.00948.x]
[19]
Poce, G.; Consalvi, S.; Venditti, G.; Alfonso, S.; Desideri, N.; Fernandez-Menendez, R.; Bates, R.H.; Ballell, L.; Barros Aguirre, D.; Rullas, J.; De Logu, A.; Gardner, M.; Ioerger, T.R.; Rubin, E.J.; Biava, M. Novel pyrazole-containing compounds active against Mycobacterium tuberculosis. ACS Med. Chem. Lett., 2019, 10(10), 1423-1429.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00204] [PMID: 31620228]
[20]
Dias, D.; Pacheco, B.S.; Cunico, W.; Pizzuti, L.; Pereira, C.M.P. Recent advances on the green synthesis and antioxidant activities of pyrazoles. Mini Rev. Med. Chem., 2015, 14(13), 1078-1092.
[http://dx.doi.org/10.2174/1389557515666150101102606] [PMID: 25553424]
[21]
Bailey, D.M.; Hlavac, A.G.; Feigensonf, M.E. 3,4-Diphenyl- 1H-pyrazole- 1 -propanamhe Antidepressants. J. Med. Chem., 1985, 28(2), 256-260.
[22]
Naim, M.J.; Alam, O.; Nawaz, F.; Alam, J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci., 2016, 8(1), 2-17.
[23]
Jayaraj, R.L.; Tamilselvam, K.; Manivasagam, T.; Elangovan, N. Neuroprotective effect of CNB-001, a novel pyrazole derivative of curcumin on biochemical and apoptotic markers against rotenone-induced SK-N-SH cellular model of Parkinson’s disease. J. Mol. Neurosci., 2013, 51(3), 863-870.
[http://dx.doi.org/10.1007/s12031-013-0075-8] [PMID: 23900721]
[24]
Argentieri, D.C.; Ritchie, D.M.; Ferro, M.P.; Kirchner, T.; Wachter, M.P.; Anderson, D.W.; Rosenthale, M.E.; Capetola, R.J. Tepoxalin: a dual cyclooxygenase/5-lipoxygenase inhibitor of arachidonic acid metabolism with potent anti-inflammatory activity and a favorable gastrointestinal profile. J. Pharmacol. Exp. Ther., 1994, 271(3), 1399-1408.
[PMID: 7996452]
[25]
El-Feky, S.A.H.; Abd El-Samii, Z.K.; Osman, N.A.; Lashine, J.; Kamel, M.A.; Thabet, H. Kh. Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II. Bioorg. Chem., 2015, 58, 104-116.
[http://dx.doi.org/10.1016/j.bioorg.2014.12.003] [PMID: 25590381]
[26]
Abou, D.A.; Ella, E.; Albohy, Æ.A.; Abouzid, K.A.M. MEDICINAL CHEMISTRY Lonazolac analogues: Molecular modeling, synthesis, and in vivo anti-inflammatory activity. Med. Chem. Res., 2009, 18, 725-744.
[http://dx.doi.org/10.1007/s00044-009-9163-2]
[27]
Domenjoz, R. The pharmacology of phenylbutazone analogues Ann; New York Acad. Sci, 1948.
[28]
Tewari, A.K.; Srivastava, P.; Singh, V.P.; Singh, A.; Goel, R.K.; Mohan, C.G. Novel anti-inflammatory agents based on pyrazole based dimeric compounds; design, synthesis, docking and in vivo activity. Chem. Pharm. Bull. (Tokyo), 2010, 58(5), 634-638.
[http://dx.doi.org/10.1248/cpb.58.634] [PMID: 20460788]
[29]
Gutowski, G.E.; Sweeney, M.J.; DeLong, D.C.; Hamill, R.L.; Gerzon, K.; Dyke, R.W. Biochemistry and biological effects of the pyrazofurins (pyrazomycins): initial clinical trial. Ann. N. Y. Acad. Sci., 1975, 255(1), 544-551.
[http://dx.doi.org/10.1111/j.1749-6632.1975.tb29257.x] [PMID: 1059372]
[30]
Shaw, A. T.; Yasothan, U.; Kirkpatrick, P. .Crizotinib,. 2011.
[http://dx.doi.org/10.1038/nrd3600]
[31]
Dooley, M.; Plosker, G.L. Zaleplon: A review of its use in the treatment of insomnia. Drugs, 2000, 60(2), 413-445.
[32]
Marrs, J.C. Indiplon: A nonbenzodiazepine sedative-hypotonic for the treatment of insomnia. Ann. Pharmacother., 2008, 42(7-8), 1070-1079.
[http://dx.doi.org/10.1345/aph.1K683]
[33]
Qureshi, S.Z. Some Observations on a Simple Method for the Determination of Novalgin in Drug Formulations with Iron (lll) -1, lO-Phenanthroline. Microchem. J., 1990, 41(3), 362-365.
[34]
Davies, N.M.; Mclachlan, A.J.; Day, R.O.; Williams, K.M. Clinical Pharmacokinetics and Pharmacodynamics of Celecoxib A Selective Cyclo-Oxygenase-2 Inhibitor. Clin. Pharmacokinet., 2000, 38(3), 225-242.
[35]
Curioni, C.; André, C. Rimonabant for overweight or obesity (Review). 2010.4pub2.www.cochranelibrary.com
[36]
Sharma, S. and; Bhatia, V. Phytochemicals for drug discovery in Alzheimer’s disease: In silico advances. Curr. Pharm. Des., 2020, 27, 1-13.
[http://dx.doi.org/10.2174/1389557520666200901184146]]
[37]
Khan, M.F.; Alam, M.M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M.S.C. The therapeutic voyage of pyrazole and its analogs. Eur. J. Med. Chem., 2016, 14, 170-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.077] [PMID: 27191614]
[38]
Sharma, S.; Bhatia, V. Nanoscale drug delivery systems for glaucoma: Experimental and in silico advances. Curr. Top. Med. Chem., 2020, 20(1), 1-11.
[http://dx.doi.org/10.2174/1568026620666200922114210]]
[39]
Lindsley, C.W. Pharmacoeconomics and the medicinal chemist. ACS Med. Chem. Lett., 2014, 5(10), 1066-1068.
[http://dx.doi.org/10.1021/ml500351u] [PMID: 25313315]
[40]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[41]
Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol., 2014, 32(1), 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[42]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[43]
Lindsley, C.W. New statistics on the cost of new drug development and the trouble with CNS drugs. ACS Chem. Neurosci., 2014, 5(12), 1142-1142.
[http://dx.doi.org/10.1021/cn500298z] [PMID: 25515636]
[44]
Zhao, Q.; Yu, H.; Ji, M.; Zhao, Y.; Chen, X. Computational Model Development of Drug-Target Interaction Prediction: A Review. Curr. Protein Pept. Sci., 2019, 492-494.
[45]
Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem. Biol. Interact., 2008, 171(2), 165-176.
[http://dx.doi.org/10.1016/j.cbi.2006.12.006] [PMID: 17229415]
[46]
Sharma, S.; Bhatia, V. Treatment of type 2 diabetes mellitus (T2DM): Can GLP-1 receptor agonists fill in the gaps? Chem Biol Lett., 2020, 7(4), 215-224.
[http://dx.doi.org/10.1016/j.drudis.2006.07.010] [PMID: 16935748]
[47]
Hann, M.M.; Oprea, T.I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol., 2004, 8(3), 255-263.
[http://dx.doi.org/10.1016/j.cbpa.2004.04.003] [PMID: 15183323]
[48]
Roche, O.; Guba, W. Computational chemistry as an integral component of lead generation. Mini Rev. Med. Chem., 2005, 5(7), 677-683.
[http://dx.doi.org/10.2174/1389557054368826] [PMID: 16026314]
[49]
Sharma, S.; and Bhatia, V. Drug Design of GLP-1 Receptor Agonists: Importance of In silico Methods. Curr. Pharm. Des., 2020.
[50]
Tang, Y.; Zhu, W.; Chen, K.; Jiang, H. New technologies in computer-aided drug design: Toward target identification and new chemical entity discovery. Drug Discov. Today. Technol., 2006, 3(3), 307-313.
[http://dx.doi.org/10.1016/j.ddtec.2006.09.004] [PMID: 24980533]
[51]
Congreve, M.; Murray, C.W.; Blundell, T.L. Keynote review: Structural biology and drug discovery. Drug Discov. Today, 2005, 10(13), 895-907.
[52]
Evers, A.; Klabunde, T. Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. J. Med. Chem., 2005, 48(4), 1088-1097.
[http://dx.doi.org/10.1021/jm0491804] [PMID: 15715476]
[53]
Varady, J.; Wu, X.; Fang, X.; Min, J.; Hu, Z.; Levant, B.; Wang, S. Molecular modeling of the three-dimensional structure of dopamine 3 (D3) subtype receptor: discovery of novel and potent D3 ligands through a hybrid pharmacophore- and structure-based database searching approach. J. Med. Chem., 2003, 46(21), 4377-4392.
[http://dx.doi.org/10.1021/jm030085p] [PMID: 14521403]
[54]
and R. J. A. W. Astles, P. C., T. J. Brown, N. V. Harris, M. F. Harper, C. McCarthy, B. Porter, C. Smith, “Selective endothelin A receptor antagonists. 2. Discovery and structure-activity relationships of 5-ketopentanoic acid derivatives. Eur. J. Med. Chem., 1997, 32(6), 515-522.
[http://dx.doi.org/10.1016/S0223-5234(97)84014-7]
[55]
Lavrador, K.; Murphy, B.; Saunders, J.; Struthers, S.; Wang, X.; Williams, J. A screening library for peptide activated G-protein coupled receptors. 1. The test set. J. Med. Chem., 2004, 47(27), 6864-6874.
[http://dx.doi.org/10.1021/jm040084c] [PMID: 15615535]
[56]
Marriott, D.P.; Dougall, I.G.; Meghani, P.; Liu, Y.J.; Flower, D.R. Lead generation using pharmacophore mapping and three-dimensional database searching: application to muscarinic M(3) receptor antagonists. J. Med. Chem., 1999, 42(17), 3210-3216.
[http://dx.doi.org/10.1021/jm980409n] [PMID: 10464008]
[57]
Evers, A.; Klebe, G. Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J. Med. Chem., 2004, 47(22), 5381-5392.
[http://dx.doi.org/10.1021/jm0311487] [PMID: 15481976]
[58]
Guba, W.; Neidhart, W.; Nettekoven, M. Novel and potent NPY5 receptor antagonists derived from virtual screening and iterative parallel chemistry design. Bioorg. Med. Chem. Lett., 2005, 15(6), 1599-1603.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.063] [PMID: 15745805]
[59]
Schneider, G.; Nettekoven, M.; Ag, F.H.R. Ligand-based combinatorial design of selective purinergic receptor (A2A) antagonists using self-organizing maps. J. Comb. Chem., 2003, 5(3), 233-237.
[http://dx.doi.org/10.1021/cc020092j] [PMID: 12739938]
[60]
Flohr, S.; Kurz, M.; Kostenis, E.; Brkovich, A.; Fournier, A.; Klabunde, T. Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure-activity relationships and nuclear magnetic resonance studies on urotensin II. J. Med. Chem., 2002, 45(9), 1799-1805.
[http://dx.doi.org/10.1021/jm0111043] [PMID: 11960491]
[61]
Schapira, M.; Raaka, B.M.; Samuels, H.H.; Abagyan, R. In silico discovery of novel retinoic acid receptor agonist structures. BMC Struct. Biol., 2001, 1(1), 1-7.
[http://dx.doi.org/10.1186/1472-6807-1-1] [PMID: 11405897]
[62]
Schapira, M. Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking. Proc. Natl. Acad. Sci., 2003, 100(12), 7354-7359.
[http://dx.doi.org/10.1073/pnas.1131854100]
[63]
Forino, M.; Jung, D.; Easton, J.B.; Houghton, P.J.; Pellecchia, M. Virtual docking approaches to protein kinase B inhibition. J. Med. Chem., 2005, 48(7), 2278-2281.
[http://dx.doi.org/10.1021/jm048962u] [PMID: 15801821]
[64]
Peng, H.; Huang, N.; Qi, J.; Xie, P.; Xu, C.; Wang, J.; Yang, C. Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening. Bioorg. Med. Chem. Lett., 2003, 13(21), 3693-3699.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.014]] [PMID: 14552760]
[65]
Kakkar, R; Sharma, S; Badhani, B Density functional study of functionalization of carbon nanotubes with carbenes., Can Chem Trans 2014; 2(4):434-49.10.13179/ canchemtrans.2014.02.04.0132.
[http://dx.doi.org/10.1021/jm030504i]
[66]
Desai, P.V.; Patny, A.; Sabnis, Y.; Tekwani, B.; Gut, J.; Rosenthal, P.; Srivastava, A.; Avery, M. Identification of novel parasitic cysteine protease inhibitors using virtual screening. 1. The ChemBridge database. J. Med. Chem., 2004, 47(26), 6609-6615.
[http://dx.doi.org/10.1021/jm0493717] [PMID: 15588096]
[67]
Lam, P.Y.S.; Ru, Y.; Jadhav, P.K.; Aldrich, P.E.; DeLucca, G.V.; Eyermann, C.J.; Chang, C.H.; Emmett, G.; Holler, E.R.; Daneker, W.F.; Li, L.; Confalone, P.N.; McHugh, R.J.; Han, Q.; Li, R.; Markwalder, J.A.; Seitz, S.P.; Sharpe, T.R.; Bacheler, L.T.; Rayner, M.M.; Klabe, R.M.; Shum, L.; Winslow, D.L.; Kornhauser, D.M.; Hodge, C.N. Cyclic HIV protease inhibitors: synthesis, conformational analysis, P2/P2′ structure-activity relationship, and molecular recognition of cyclic ureas. J. Med. Chem., 1996, 39(18), 3514-3525.
[http://dx.doi.org/10.1021/jm9602571] [PMID: 8784449]
[68]
Haque, T.S.; Skillman, A.G.; Lee, C.E.; Habashita, H.; Gluzman, I.Y.; Ewing, T.J.; Goldberg, D.E.; Kuntz, I.D.; Ellman, J.A. Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J. Med. Chem., 1999, 42(8), 1428-1440.
[http://dx.doi.org/10.1021/jm980641t] [PMID: 10212129]
[69]
Doman, T.N.; McGovern, S.L.; Witherbee, B.J.; Kasten, T.P.; Kurumbail, R.; Stallings, W.C.; Connolly, D.T.; Shoichet, B.K. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem., 2002, 45(11), 2213-2221.
[http://dx.doi.org/10.1021/jm010548w] [PMID: 12014959]
[70]
Krier, M.; Araújo-Júnior, J.X.; Schmitt, M.; Duranton, J.; Justiano-Basaran, H.; Lugnier, C.; Bourguignon, J.J.; Rognan, D. Design of small-sized libraries by combinatorial assembly of linkers and functional groups to a given scaffold: application to the structure-based optimization of a phosphodiesterase 4 inhibitor. J. Med. Chem., 2005, 48(11), 3816-3822.
[http://dx.doi.org/10.1021/jm050063y] [PMID: 15916433]
[71]
Rastelli, G.; Ferrari, A.M.; Costantino, L.; Gamberini, M.C. Discovery of new inhibitors of aldose reductase from molecular docking and database screening. Bioorg. Med. Chem., 2002, 10(5), 1437-1450.
[http://dx.doi.org/10.1016/S0968-0896(01)00410-2] [PMID: 11886806]
[72]
Kraemer, O.; Hazemann, I.; Podjarny, A.D.; Klebe, G. Virtual screening for inhibitors of human aldose reductase. Proteins, 2004, 55(4), 814-823.
[http://dx.doi.org/10.1002/prot.20057] [PMID: 15146480]
[73]
Liu, X.; Yu, H.; Zhao, X.; Huang, X. Molecular simulations study of novel with a high selectivity for Cav3. 1 calcium channel. Protein Sci., 2015, 24, 1737-1747.
[http://dx.doi.org/10.1002/pro.2763] [PMID: 26256672]
[74]
Peukert, S.; Brendel, J.; Pirard, B.; Strübing, C.; Kleemann, H.W.; Böhme, T.; Hemmerle, H. Pharmacophore-based search, synthesis, and biological evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorg. Med. Chem. Lett., 2004, 14(11), 2823-2827.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.057] [PMID: 15125940]
[75]
Liu, H.; Li, Y.; Song, M.; Tan, X.; Cheng, F.; Zheng, S.; Shen, J.; Luo, X.; Ji, R.; Yue, J.; Hu, G.; Jiang, H.; Chen, K. Structure-based discovery of potassium channel blockers from natural products: virtual screening and electrophysiological assay testing. Chem. Biol., 2003, 10(11), 1103-1113.
[http://dx.doi.org/10.1016/j.chembiol.2003.10.011] [PMID: 14652078]
[76]
Hue, M.; Riffle, M.; Vert, J.; Noble, W.S. Large-scale prediction of protein-protein interactions from structures. BMC Bioinformatics, 2010, 11, 1-9.
[http://dx.doi.org/10.1186/1471-2105-11-144]
[77]
Chung, C.; Hann, M.M. .Targeting protein – protein interaction perspective detection and analysis of PPIs. Structural Biology in Drug Discovery, J.- P. Renaud (Ed.), 2020, 479-502..
[78]
Sarma, P.; Shekhar, N.; Prajapat, M.; Avti, P.; Kaur, H.; Kumar, S.; Singh, S.; Kumar, H.; Prakash, A.; Dhibar, D.P.; Medhi, B. In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). J. Biomol. Struct. Dyn., 2020, 1-9.
[http://dx.doi.org/10.1080/07391102.2020.1753580] [PMID: 32266867]
[79]
Bell, D.R.; Weber, J.K.; Yin, W.; Huynh, T.; Duan, W.; Zhou, R. In silico design and validation of high-affinity RNA aptamers targeting epithelial cellular adhesion molecule dimers. Proc. Natl. Acad. Sci. USA, 2020, 117(15), 8486-8493.
[http://dx.doi.org/10.1073/pnas.1913242117] [PMID: 32234785]
[80]
Singh, J.; Chuaqui, C.E.; Boriack-Sjodin, P.A.; Lee, W.C.; Pontz, T.; Corbley, M.J.; Cheung, H.K.; Arduini, R.M.; Mead, J.N.; Newman, M.N.; Papadatos, J.L.; Bowes, S.; Josiah, S.; Ling, L.E. Successful shape-based virtual screening: the discovery of a potent inhibitor of the type I TGFbeta receptor kinase (TbetaRI). Bioorg. Med. Chem. Lett., 2003, 13(24), 4355-4359.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.028] [PMID: 14643325]
[81]
Sawyer, J.S. Synthesis and activity of New aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. Med. Chem. Chem., 2003, 46(19), 11-14.
[http://dx.doi.org/10.1021/jm0205705]
[82]
Becker, O.M. An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J. Med. Chem., 2006, 49, 3116-3135.
[83]
K. (Ed. ). Roy. Computational Modeling of Drugs Against Alzheimer’ s Disease.Neuromethods, . 2018.
[84]
Ferreira, L.G.; Santos, R.N.; Oliva, G.; Andricopulo, A.D. Andricopulo Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384]
[85]
Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 1-18.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[86]
Chaudhary, K.K.; Mishra, N. A review on molecular docking.Novel tool for drug discovery, databases, 2016, 3(4), 1-4.,
[87]
Yuriev, E.; Ramsland, P.A. Latest developments in molecular docking: 2010 – 2011 in review. J. Mol. Recognit., 2013, 26(5), 215-239.
[http://dx.doi.org/10.1002/jmr.2266]
[88]
Oshiro, C. Performance of 3D-Database molecular docking studies into homology models. J. Med. Chem., 2004, 47(3), 764-767.
[http://dx.doi.org/10.1021/jm0300781]
[89]
Polanski, J. Receptor Dependent Multidimensional QSAR for Modeling Drug - Receptor Interactions. Curr. Med. Chem., 2009, 16(25), 3243-3257.
[http://dx.doi.org/10.2174/092986709788803286]
[90]
Paquet, E.; Viktor, H.L.; Simulations, M.C. Molecular dynamics, monte carlo simulations, and langevin dynamics: a computational review. BioMed Res. Int., 2015.2015183918
[http://dx.doi.org/10.1155/2015/183918] [PMID: 25785262]
[91]
Dudek, A.Z.; Arodz, T.; Gálvez, J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb. Chem. High Throughput Screen., 2006, 9(3), 213-228.
[http://dx.doi.org/10.2174/138620706776055539] [PMID: 16533155]
[92]
Dandapani, S.; Rosse, G.; Southall, N.; Salvino, J.M.; Thomas, C.J. Selecting, acquiring, and using small molecule libraries for high-throughput screening. Curr. Protoc. Chem. Biol., 2012, 4(3), 177-191.
[93]
Kakkar, R.; Sharma, S. DFT study of interactions of carbenes with boron nitride nanotubes. Chem. J., 2011, 1, 9-20.
[94]
Chem, M. Computational ligand-based rational design: role of conformational sampling and force fields in model development. MedChemComm, 2011, 2(5), 356-370.
[95]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles; applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[96]
Lavecchia, A.; Di Giovanni, C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[97]
Caporuscio, F.; Tafi, A. Pharmacophore modelling: A forty year old approach and its modern synergies. Curr. Med. Chem., 2011, 18(17), 2543-2553.
[98]
Eckert, H.; Bajorath, J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today, 2007, 12(5-6), 225-233.
[http://dx.doi.org/10.1016/j.drudis.2007.01.011] [PMID: 17331887]
[99]
Clark, M.; Iii, R.D.C.; Jones, D.M.; Patterson, D.E.; Simeroth, P.E. Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-Structural databases. Tetrahedron Comput. Methodol., 1990, 3(1), 47-59.
[http://dx.doi.org/10.1016/0898-5529(90)90120-W]
[100]
Malathi, K.; Ramaiah, S. Bioinformatics approaches for new drug discovery: a review. Biotechnol. Genet. Eng. Rev., 2018, 34(2), 243-260.
[http://dx.doi.org/10.1080/02648725.2018.1502984] [PMID: 30064294]
[101]
Huang, H. Current developments of computer-aided drug design. J Taiwan Inst Chem Eng, 2010, 41, 623-635.
[102]
Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47.
[PMID: 26604800]
[103]
Wetzel, S.; Klein, K.; Renner, S.; Rauh, D.; Oprea, T.I.; Mutzel, P.; Waldmann, H. Interactive exploration of chemical space with Scaffold Hunter. Nat. Chem. Biol., 2009, 5(8), 581-583.
[http://dx.doi.org/10.1038/nchembio.187] [PMID: 19561620]
[104]
Button, A.L.; Hiss, J.A.; Schneider, P.; Schneider, G. Scoring of de novo designed chemical entities by macromolecular target prediction. Mol. Inform., 2017, 36(1-2), 1-7.
[http://dx.doi.org/10.1002/minf.201600110] [PMID: 27643811]
[105]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[106]
French, G. L. Clinical impact and relevance of antibiotic resistance, 2005, 57, 1514-1527.,
[http://dx.doi.org/10.1016/j.addr.2005.04.005]
[107]
Ren, D.; Wang, S.; Ko, Y.; Geng, Y.; Ogasawara, Y.; Liu, H. .Identification of the C -glycoside synthases during biosynthesis of the pyrazole- C -nucleosides formycin and pyrazofurin 2019, 1-6..
[108]
Bekhit, A.A.; Hymete, A.; El-Din, A.; Bekhit, A.; Damtew, A.; Aboul-Enein, H.Y. Pyrazoles as promising scaffold for the synthesis of anti-inflammatory and/or antimicrobial agent: a review. Mini Rev. Med. Chem., 2010, 10(11), 1014-1033.
[http://dx.doi.org/10.2174/1389557511009011014] [PMID: 20540709]
[109]
Milewski, S. Glucosamine-6-phosphate synthase — the multi-facets enzyme. Biochim. Biophys. Acta Protein Structure and Molecular Enzymol., 2002, 1597(2), 173-192.
[http://dx.doi.org/10.1016/S0167-4838(02)00318-7]
[110]
Jayanna, N.D.; Vagdevi, H.M.; Dharshan, J.C.; Raghavendra, R.; Telkar, S.B. Synthesis, antimicrobial, analgesic activity, and molecular docking pyrazole-4-carbaldehyde derivatives. Med. Chem. Res., 2013, 22(12), 4-12.
[111]
Abrigach, F.; Rokni, Y.; Takfaoui, A.; Khoutoul, M.; Doucet, H.; Asehraou, A.; Touzani, R. In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives. Biomed. Pharmacother., 2018, 103(April), 653-661.
[http://dx.doi.org/10.1016/j.biopha.2018.04.061] [PMID: 29679907]
[112]
Triglia, T.; Cowman, A.F. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci., 1994, 91(15), 7149-7153.
[http://dx.doi.org/10.1073/pnas.91.15.7149]
[113]
Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Vinay, A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2016.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.021] [PMID: 27657808]
[114]
Nasr, T.; Bondock, S.; Eid, S. Design, synthesis, antimicrobial evaluation and molecular docking studies of some new thiophene, pyrazole and pyridone derivatives bearing sulfisoxazole moiety. Eur. J. Med. Chem., 2014, 84, 491-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.052] [PMID: 25050881]
[115]
Menozzi, G. Synthesis , antimicrobial activity and molecular modeling studies of halogenated 4- [ 1 H -imidazol-1-yl ( phenyl ) methyl ] 2004, 12, 5465-5483..
[116]
Vijesh, A.M.; Isloor, A.M. Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arab. J. Chem., 2013, 6(2), 197-204.
[http://dx.doi.org/10.1016/j.arabjc.2011.10.007]
[117]
Sander, T.; Freyss, J.; Von Korff, M.; Rene, J.; Rufener, C. OSIRIS, an entirely in-house developed drug discovery informatics system. J. Chem. Inf. Model., 2009, 49(2), 232-246.
[118]
Schu, A.W. research papers PRODRG: a tool for high-throughput crystallography of protein ± ligand complexes. Acta Crystallogr D Biol., 2004, 60(8), 1355-1363.
[119]
Zhao, X.; Chen, M.; Huang, B.; Ji, H.; Yuan, M. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies on α 1A -Adrenergic receptor antagonists based on pharmacophore molecular alignment 2011, 7022-7037..
[120]
Cavasotto, C.N.; Phatak, S.S. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today, 2009, 14(13-14), 676-683.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006] [PMID: 19422931]
[121]
Padwal, R.S.; Majumdar, S.R. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. , The Lancet, 2006, 369(9555), 71-77.
[122]
Kumar, H.ACSC. Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur. J. Med. Chem., 2013, 70, 248-258.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.004] [PMID: 24161702]
[123]
Aziz, H.; Zahoor, A.F.; Shahzadi, I.; Irfan, A. Recent synthetic methodologies towards the synthesis of pyrazoles. Polycycl. Aromat. Compd., 2019, 0(0), 1-23.
[http://dx.doi.org/10.1080/10406638.2019.1614638]
[124]
Ramos Martins, D.; Pazini, F.; de Medeiros Alves, V.; Santana de Moura, S.; Morais Lião, L.; Torquato Quezado de Magalhães, M.; Campos Valadares, M.; Horta Andrade, C.; Menegatti, R.; Lavorenti Rocha, M. Synthesis, docking studies, pharmacological activity and toxicity of a novel pyrazole derivative (LQFM 021)--possible effects on phosphodiesterase. Chem. Pharm. Bull. (Tokyo), 2013, 61(5), 524-531.
[http://dx.doi.org/10.1248/cpb.c12-01016] [PMID: 23649195]
[125]
Friesner, R.A. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1; Method and Assessment of Docking Accuracy. J Med. Chem., 2004, 47(7), 1739-1749.
[126]
Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Pyrazole clubbed triazolo[1,5-a]pyrimidine hybrids as an anti-tubercular agents: Synthesis, in vitro screening and molecular docking study. Bioorg. Med. Chem., 2015, 23(24), 7711-7716.
[http://dx.doi.org/10.1016/j.bmc.2015.11.018] [PMID: 26631439]
[127]
Kumari, S.; Paliwal, S.; Chauhan, R. Synthesis of pyrazole derivatives possessing anticancer activity: Current status. Syn Comm, 2014, 44(11), 37-41.
[128]
Ahsan, M.J.; Choudhary, K.; Jadav, S.S.; Yasmin, S.; Ansari, Y.; Sreenivasulu, R. Synthesis, antiproliferative activity, and molecular docking studies of curcumin analogues bearing pyrazole ring. Med. Chem. Res., 2015, 24(12), 4166-4180.
[http://dx.doi.org/10.1007/s00044-015-1457-y]
[129]
Sun, J; Lv, XH; Qiu, HY; Wang, YT; Du, QR; Li, DD; Yang, YH; Zhu, HL Synthesis, biological evaluation and molecular docking studies of pyrazole derivatives coupling with a thiourea moiety as novel CDKs inhibitors. Eur. J. Med. Chem., 2013, 68, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.003] [PMID: 23933045]
[130]
Alam, R.; Wahi, D.; Singh, R.; Sinha, D.; Tandon, V.; Grover, A. Rahisuddin, Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg. Chem., 2016, 69, 77-90.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.001] [PMID: 27744115]
[131]
Cereto-massagué, A.; José, M.; Valls, C.; Mulero, M.; Pujadas, G.; Garcia-vallve, S. Tools for in silico target fishing. Methods, 2014, 71, 98-103.
[132]
Liu, X. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res., 2010, 38, 5-7.
[http://dx.doi.org/10.1093/nar/gkq300]
[133]
Wang, X. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 1-5.
[http://dx.doi.org/10.1093/nar/gkx374]
[134]
Kharkar, P.S.; Gaud, R.S. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med. Chem., 2016, 6(3), 333-342.
[135]
Henry, D.R.; Pearlman, R.S. Use of flexible queries for searching conformationally flexible molecules in databases of three dimensional structures. J. Chem. Inf. Comput. Sci., 1992, 32(1), 101-109.
[136]
Ali, A.R.; El-Bendary, E.R.; Ghaly, M.A.; Shehata, I.A. Synthesis, in vitro anticancer evaluation and in silico studies of novel imidazo[2,1-b]thiazole derivatives bearing pyrazole moieties. Eur. J. Med. Chem., 2014, 75, 492-500.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.010] [PMID: 24576591]
[137]
Nikonova, A.S.; Astsaturov, I.; Golemis, E.A. Aurora A kinase (AURKA) in normal and pathological cell división. Cell. Mol. Life Sci., 2012, 70(4), 661-687.
[138]
Kundu, P.; Chattopadhyay, N. US CR J. Photochem. Photobiol. B Biol., 2017.
[139]
Saad, F.; Lipton, A. SRC kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer. Cancer Treat. Rev., 2010, 36(2), 177-184.
[http://dx.doi.org/10.1016/j.ctrv.2009.11.005] [PMID: 20015594]
[140]
El-karim, S.S.A.; Anwar, M.M.; Mohamed, N.A.; Nasr, T.; Elseginy, S.A. Design, synthesis, biological evaluation and molecular docking studies of novel benzofuran-pyrazole derivatives as anticancer agents. Bioorg. Chem., 2015, 63, 1-12.
[http://dx.doi.org/10.1016/j.bioorg.2015.08.006]
[141]
Kumar, A. BIM mediates EGFR Tyrosine kinase inhibitor- induced apoptosis in lung cancers with oncogenic EGFR mutations. PLOS Med., 2007, 4(10)
[142]
Joukov, V. A novel vascular endothelial growth factor , VEGF-C , is a ligand for the Flt4 ( VEGFR-3 ) and KDR ( VEGFR-2 ) receptor tyrosine kinases 1996, 15(2), 290-298..
[143]
Zeng, H.; Zhang, H. Combined 3D-QSAR modeling and molecular docking study on 1,4-dihydroindeno[1,2-c]pyrazoles as VEGFR-2 kinase inhibitors. J. Mol. Graph. Model., 2010, 29(1), 54-71.
[http://dx.doi.org/10.1016/j.jmgm.2010.04.004] [PMID: 20471293]
[144]
Burke, K.; Burke, K. Perspective on density functional theory Perspective on density functional theory. J. Chem. Phys., 2012.150901
[145]
Csonka, G.I. Proper basis set for quantum mechanical studies of potential energy surfaces of carbohydrates. J. Mol. Struct. THEOCHEM, 2002, 584(1-3), 4-7.
[146]
Taylor, C.W. Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. Br. J. Cancer, 1991, 63(6), 923-929.
[http://dx.doi.org/10.1038/bjc.1991.202]
[147]
Semire, B.; Oyebamiji, A.K. Theoretical studies on pyrazole derivatives as anti breast cancer agents. Bulletin of Pharm Res, 2017, 7(3), 1-9.
[http://dx.doi.org/10.21276/bpr.2017.7.3.3]
[148]
Ibrahim, H.S.; Abou-Seri, S.M.; Tanc, M.; Elaasser, M.M.; Abdel-Aziz, H.A.; Supuran, C.T. Isatin-pyrazole benzenesulfonamide hybrids potently inhibit tumor-associated carbonic anhydrase isoforms IX and XII. Eur. J. Med. Chem., 2015, 103, 583-593.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.021] [PMID: 26408817]
[149]
Salvemini, D.; Wang, Z.; Bourdon, D.M.; Stern, M.K.; Currie, M.G.; Manning, P.T. Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur. J. Pharmacol., 1996, 303(3), 217-220.
[150]
Rao, P.N.P.; Knaus, E.E.; Road, T.P.; Jolla, L. .Evolution of nonsteroidal anti-Inflammatory cyclooxygenase (COX). Inhibition and Beyond Drugs, 2008, 11(2), 81-110. [NSAIDs]..
[PMID: 19203472]
[151]
El-Sayed, M.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.; El-Azab, A.S.; Asiri, Y.A.; Eltahir, K.E.H. Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study. Bioorg. Med. Chem., 2011, 19(11), 3416-3424.
[http://dx.doi.org/10.1016/j.bmc.2011.04.027] [PMID: 21570309]
[152]
Tewari, A.K.; Singh, V.P.; Yadav, P.; Gupta, G.; Singh, A.; Goel, R.K.; Shinde, P.; Mohan, C.G. Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorg. Chem., 2014, 56, 8-15.
[http://dx.doi.org/10.1016/j.bioorg.2014.05.004] [PMID: 24893208]
[153]
El-sayed, M.A.; Abdel-aziz, N.I.; Abdel-aziz, A.A.; El-azab, A.S.; Eltahir, K.E.H. Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2. Bioorg. Med. Chem., 2012, 20, 3306-3316.
[154]
Sribalan, R.; Banuppriya, G.; Kirubavathi, M.; Jayachitra, A.; Padmini, V. Multiple biological activities and molecular docking studies of newly hybrids. Bioorg. Med. Chem. Lett., 2016, 26(23), 5624-5630.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.075] [PMID: 27825544]
[155]
Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.; Chimenti, P.; Secci, D.; Rossi, F.; Turini, P.; Ortuso, F.; Alcaro, S.; Cardia, M.C. Synthesis, molecular modeling studies and selective inhibitory activity against MAO of N1-propanoyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives. Eur. J. Med. Chem., 2008, 43(10), 2262-2267.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.026] [PMID: 18281126]
[156]
Bhale, P. S.; Thakare, V. N.; Masand, V. Design, synthesis, characterization and anti-inflammatory evaluation of novel pyrazole amalgamated flavones Bioorg., Med. Chem. Lett. 2013.
[157]
Ashwell, J. D. The many paths to p38 mitogen- activated protein kinase activation in the immune system 2006, 6(July), 532-540..
[http://dx.doi.org/10.1038/nri1865]
[158]
Lan, P.; Huang, Z.; Sun, J.; Chen, W. 3D-QSAR and molecular docking studies on fused pyrazoles as p38α mitogen-activated protein kinase inhibitors 2010, 3357-3374..
[http://dx.doi.org/10.3390/ijms11093357]
[159]
Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules To correlate and predict their biological activity. J. Med. Chem., 1994, 37(24), 4130-4146.
[http://dx.doi.org/10.1021/jm00050a010]
[160]
Lapinsky, D.J. Tandem photoaffinity labeling-bioorthogonal conjugation in medicinal chemistry. Bioorg. Med. Chem., 2012, 20(21), 6237-6247.
[http://dx.doi.org/10.1016/j.bmc.2012.09.010] [PMID: 23026086]
[161]
Neelarapu, R. Design; Synthesis, Docking, and Biological Evaluation of Novel Diazide-Containing Isoxazole- and Pyrazole-Based Histone Deacetylase Probes, 2011, pp. 4350-4364.
[162]
Chimenti, F. Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of 1-thiocarbamoyl-3, 5-diaryl-4, 5-dihydro- (1 H) - pyrazole derivatives. J. Med. Chem., 2005, 48(23), 7113-7122.
[http://dx.doi.org/10.1021/jm040903t]
[163]
Vishnu Nayak, B.; Ciftci-Yabanoglu, S.; Jadav, S.S.; Jagrat, M.; Sinha, B.N.; Ucar, G.; Jayaprakash, V. Monoamine oxidase inhibitory activity of 3,5-biaryl-4,5-dihydro-1H-pyrazole-1-carboxylate derivatives. Eur. J. Med. Chem., 2013, 69, 762-767.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.010] [PMID: 24099995]
[164]
Thornberry, N.A.; Gallwitz, B. Best Practice & Research Clinical Endocrinology & Metabolism Mechanism of action of inhibitors of dipeptidyl-peptidase-4. Best Pract. Res. Clin. Endocrinol. Metab., 2009, 23(4), 479-486.
[http://dx.doi.org/10.1016/j.beem.2009.03.004] [PMID: 19748065]
[165]
Yang, H.; Shen, Y.; Chen, J.; Jiang, Q.; Leng, Y.; Shen, J. Structure-based virtual screening for identification of novel 11beta-HSD1 inhibitors. Eur. J. Med. Chem., 2009, 44(3), 1167-1171.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.005] [PMID: 18653260]
[166]
Wu, D.; Jin, F. Synthesis, structure - activity relationship, and pharmacophore modeling studies of pyrazole-3- carbohydrazone derivatives as dipeptidyl peptidase IV inhibitors. Chem. Biol. Drug Des., 2012, 79(6), 897-906.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01365.x]
[167]
Hessle, L. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Natl Acad Sci, 2002, 99(14), 9445-9449.
[http://dx.doi.org/10.1073/pnas.142063399]
[168]
Sidique, S.; Ardecky, R.; Su, Y.; Narisawa, S.; Brown, B.; Millán, J.L.; Sergienko, E.; Cosford, N.D. Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). Bioorg. Med. Chem. Lett., 2009, 19(1), 222-225.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.107] [PMID: 19038545]
[169]
Turkan, F.; Cetin, A.; Taslimi, P.; Karaman, M.; Gulçin, İ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 86, 420-427.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy