Skip to main content
Log in

Recovery of Gallium from Aqueous Solution through Preconcentration by Adsorption/Desorption on Disordered Mesoporous Carbon

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

A Publisher Correction to this article was published on 25 February 2021

This article has been updated

Abstract

This work studies gallium preconcentration by means of an adsorption/desorption process using two mesoporous activated carbons synthesized by the replica method as adsorbents. The adsorption results indicate that both carbons can remove 90% of gallium from aqueous solution. Increasing the adsorbent dose favors gallium adsorption and makes the adsorption process strongly pH dependent. However, the most outstanding conclusion is related to the gallium recovery: by using a HF solution as desorbing agent (the same as employed in the adsorbents’ synthesis, in line with circular economy principles), it is possible to regenerate the adsorbent as well as recover 82% of the gallium previously retained. Additionally, the desorption enables sevenfold preconcentration of gallium ions, up to 250 ppm, by reducing the volume of the acidic solution eightfold. This enables further recovery by means of refining processes such as extraction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

References

  1. Lahiri S, Meyappan RM, Varadharaj A (1996) Gallium recovery-technological alternatives. Bull Electrochem 12:342–345

    CAS  Google Scholar 

  2. Ujaczki É, Courtney R, Cusack P et al (2019) Recovery of gallium from bauxite residue using combined oxalic acid leaching with adsorption onto zeolite HY. J Sustain Metall 5:262–274. https://doi.org/10.1007/s40831-019-00226-w

    Article  Google Scholar 

  3. Suryavanshi US, Shukla SR (2009) Adsorption of Ga(III) on oxidized coir. Ind Eng Chem Res 48:870–876. https://doi.org/10.1021/ie801259c

    Article  CAS  Google Scholar 

  4. Lu F, Xiao T, Lin J et al (2017) Resources and extraction of gallium: a review. Hydrometallurgy 174:105–115. https://doi.org/10.1016/j.hydromet.2017.10.010

    Article  CAS  Google Scholar 

  5. Jaskula BW (2020) Gallium. Mineral Commodity Summaries 2020. United States Geological Survey, Reston, pp 63–64

    Google Scholar 

  6. Zhao Z, Yang Y, Xiao Y, Fan Y (2012) Recovery of gallium from Bayer liquor: a review. Hydrometallurgy 125–126:115–124. https://doi.org/10.1016/j.hydromet.2012.06.002

    Article  CAS  Google Scholar 

  7. Jadhav UU, Hocheng H (2012) A review of recovery of metals from industrial waste. J Achiev Mater Manuf Eng 54:159–167

    Google Scholar 

  8. Chegrouche S, Bensmaili A (2002) Removal of Ga(III) from aqueous solution by adsorption on activated bentonite using a factorial design. Water Res 36:2898–2904. https://doi.org/10.1016/S0043-1354(01)00498-5

    Article  CAS  Google Scholar 

  9. Kyzas GZ, Deliyanni EA, Matis KA (2016) Activated carbons produced by pyrolysis of waste potato peels: Cobaltions removal by adsorption. Coll Surf A Physicochem Eng Asp 490:74–83. https://doi.org/10.1016/j.colsurfa.2015.11.038

    Article  CAS  Google Scholar 

  10. Zanin E, Scapinello J, de Oliveira M et al (2017) Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Saf Environ Prot 105:194–200. https://doi.org/10.1016/j.psep.2016.11.008

    Article  CAS  Google Scholar 

  11. Liang Z, Shi W, Zhao Z et al (2017) The retained templates as “helpers” for the spherical meso-silica in adsorption of heavy metals and impacts of solution chemistry. J Coll Interface Sci 496:382–390. https://doi.org/10.1016/j.jcis.2017.02.024

    Article  CAS  Google Scholar 

  12. Burakov AE, Galunin EV, Burakova IV et al (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034

    Article  CAS  Google Scholar 

  13. Zhao Z, Li X, Chai Y et al (2016) Adsorption performances and mechanisms of amidoxime resin toward gallium(III) and vanadium(V) from Bayer liquor. ACS Sustain Chem Eng 4:53–59. https://doi.org/10.1021/acssuschemeng.5b00307

    Article  CAS  Google Scholar 

  14. Zhang L, Zhu Y, Li H et al (2010) Kinetic and thermodynamic studies of adsorption of gallium(III) on nano-TiO2. Rare Met 29:16–20. https://doi.org/10.1007/s12598-010-0003-9

    Article  CAS  Google Scholar 

  15. Kadirvelu K, Namasivayam C (2003) Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv Environ Res 7:471–478. https://doi.org/10.1016/S1093-0191(02)00018-7

    Article  CAS  Google Scholar 

  16. Demiral H, Güngör C (2016) Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod 124:103–113. https://doi.org/10.1016/j.jclepro.2016.02.084

    Article  CAS  Google Scholar 

  17. Largitte L, Brudey T, Tant T et al (2016) Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Microporous Mesoporous Mater 219:265–275. https://doi.org/10.1016/j.micromeso.2015.07.005

    Article  CAS  Google Scholar 

  18. Kuroki A, Hiroto M, Urushihara Y et al (2019) Adsorption mechanism of metal ions on activated carbon. Adsorption 25:1251–1258. https://doi.org/10.1007/s10450-019-00069-7

    Article  CAS  Google Scholar 

  19. Barczak M, Michalak-Zwierz K, Gdula K et al (2015) Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions. Microporous Mesoporous Mater 211:162–173. https://doi.org/10.1016/j.micromeso.2015.03.010

    Article  CAS  Google Scholar 

  20. Nejad NF, Shams E, Amini MK (2015) Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization. J Magn Magn Mater 390:1–7. https://doi.org/10.1016/j.jmmm.2015.04.074

    Article  CAS  Google Scholar 

  21. Wu Z, Webley PA, Zhao D (2010) Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent. Langmuir 26:10277–10286. https://doi.org/10.1021/la100455w

    Article  CAS  Google Scholar 

  22. Nguyen TH, Lee MS (2019) A review on separation of gallium and indium from leach liquors by solvent extraction and ion exchange. Miner Process Extr Metall Rev 40:278–291. https://doi.org/10.1080/08827508.2018.1538987

    Article  CAS  Google Scholar 

  23. Díez E, Gómez JM, Rodríguez A et al (2020) A new mesoporous activated carbon as potential adsorbent for effective indium removal from aqueous solutions. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2019.109984

    Article  Google Scholar 

  24. Galán J, Rodríguez A, Gómez JM et al (2013) Reactive dye adsorption onto a novel mesoporous carbon. Chem Eng J 219:62–68. https://doi.org/10.1016/j.cej.2012.12.073

    Article  CAS  Google Scholar 

  25. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  26. Sing KSW, Williams RT (2004) Review physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782. https://doi.org/10.1260/0263617053499032

    Article  CAS  Google Scholar 

  27. Fuertes AB, Nevskaia DM (2003) Control of mesoporous structure of carbons synthesised using a mesostructured silica as template. Microporous Mesoporous Mater 62:177–190. https://doi.org/10.1016/S1387-1811(03)00403-7

    Article  CAS  Google Scholar 

  28. Lindqvist-Reis P (2000) Structure of solvated metal ions: solution and crystal structure of gallium, indium, scandium, yttrium, lanthanum and calcium ions with water and non-aqueous oxygen donor solvents. Doctoral Thesis, Department of Chemistry, Stockholm

  29. Pretsch C, Seibl S (2009) Structure determination of organic compounds. Springer, Berlin

    Google Scholar 

  30. Pakuła M, Walczyk M, Biniak S, Światkowski A (2007) Electrochemical and FTIR studies of the mutual influence of lead(II) or iron(III) and phenol on their adsorption from aqueous acid solution by modified activated carbons. Chemosphere 69:209–219. https://doi.org/10.1016/j.chemosphere.2007.04.028

    Article  CAS  Google Scholar 

  31. Chen C, Gao J, Yan Y (1998) Observation of the type of hydrogen bonds in coal by FTIR. Energy Fuels 12:446–449. https://doi.org/10.1021/ef970100z

    Article  CAS  Google Scholar 

  32. Gómez JM, Romero MD, Fernández TM, Díez E (2012) Immobilization of β-glucosidase in fixed bed reactor and evaluation of the enzymatic activity. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-012-0728-y

    Article  Google Scholar 

  33. Fanning PE, Vannice MA (1993) A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon N Y 31:721–730. https://doi.org/10.1016/0008-6223(93)90009-Y

    Article  CAS  Google Scholar 

  34. Szymański GS, Karpiński Z, Biniak S, Swiatkowski A (2002) The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon N Y 40:2627–2639. https://doi.org/10.1016/S0008-6223(02)00188-4

    Article  Google Scholar 

  35. Gómez JM, Díez E, Bernabé I et al (2018) Effective adsorptive removal of cobalt using mesoporous carbons synthesized by silica gel replica method. Environ Process 5:225–242. https://doi.org/10.1007/s40710-018-0304-9

    Article  CAS  Google Scholar 

  36. Nightingale ER (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387. https://doi.org/10.1021/j150579a011

    Article  CAS  Google Scholar 

  37. Xiang Y, Xu Z, Zhou Y et al (2019) A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. Chemosphere 237:124464. https://doi.org/10.1016/j.chemosphere.2019.124464

    Article  CAS  Google Scholar 

  38. Ho YS, McKay M (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1021/acs.oprd.7b00090

    Article  CAS  Google Scholar 

  39. Kyzas GZ, Deliyanni EA, Matis KA (2016) Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Coll Surf A Physicochem Eng Asp 490:74–83. https://doi.org/10.1016/j.colsurfa.2015.11.038

    Article  CAS  Google Scholar 

  40. Yu F, Wu Y, Li X, Ma J (2012) Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. J Agric Food Chem 60:12245–12253. https://doi.org/10.1021/jf304104z

    Article  CAS  Google Scholar 

  41. Peng W, Li H, Liu Y, Song S (2017) A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 230:496–504. https://doi.org/10.1016/j.molliq.2017.01.064

    Article  CAS  Google Scholar 

  42. Bahri Z, Rezai B, Kowsari E (2016) Selective separation of gallium from zinc using flotation: Effect of solution pH value and the separation mechanism. Miner Eng 86:104–113. https://doi.org/10.1016/j.mineng.2015.12.005

    Article  CAS  Google Scholar 

  43. Krishnan KA, Anirudhan TS (2008) Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon. Chem Eng J 137:257–264. https://doi.org/10.1016/j.cej.2007.04.029

    Article  CAS  Google Scholar 

  44. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J Coll Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5

    Article  CAS  Google Scholar 

  45. Hinz C (2001) Description of sorption data with isotherm equations. Geoderma 99:225–243. https://doi.org/10.1016/S0016-7061(00)00071-9

    Article  CAS  Google Scholar 

  46. Gómez JM, Romero MD, Fernández TM, Díez E (2012) Immobilization of β-glucosidase in fixed bed reactor and evaluation of the enzymatic activity. Bioprocess Biosyst Eng 35:1399–1405. https://doi.org/10.1007/s00449-012-0728-y

    Article  CAS  Google Scholar 

  47. Essington ME (2003) Surface chemistry and adsorption reactions. Soil and water chemistry: an integrated approach, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  48. Kumar KV, Gadipelli S, Wood B et al (2019) Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J Mater Chem A 7:10104–10137. https://doi.org/10.1039/c9ta00287a

    Article  CAS  Google Scholar 

  49. Holford ICR, Wedderburn RWM, Mattingly GEG (1974) A Langmuir two-surface equation as a model for phosphate adsorption by soils. J Soil Sci 25:242–255. https://doi.org/10.1111/j.1365-2389.1974.tb01121.x

    Article  Google Scholar 

  50. Shuman LM (1975) The effect of soil properties on zinc adsorption by soils. Soil Sci Soc Am J 39:454–458. https://doi.org/10.2136/sssaj1975.03615995003900030025x

    Article  CAS  Google Scholar 

  51. Bautista RG (2003) Processing to obtain high-purity gallium. JOM 55:23–26. https://doi.org/10.1007/s11837-003-0155-2

    Article  CAS  Google Scholar 

  52. Jelačić BD, Batinić-Haberle I (1986) Method of obtaining gallium from aluminate solution by electrolysis. Mater Sci Technol (United Kingdom) 2:416–419. https://doi.org/10.1179/mst.1986.2.4.416

    Article  Google Scholar 

  53. Paciej RC, Cahen GL, Stoner GE, Gileadi E (1985) Electrolytic recovery of gallium from dilute solutions employing microelectrodes. Electrochem Soc Ext Abstr 85–2:345

    Google Scholar 

  54. Raiguel S, Dehaen W, Binnemans K (2020) Extraction of gallium from simulated Bayer process liquor by Kelex 100 dissolved in ionic liquids. Dalton Trans 49:3532–3544. https://doi.org/10.1039/c9dt04623b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation has been financed by the Ministry of Economy and Competitiveness CTQ2014-59011-R (REMEWATER) and CTM2014-53485-REDC (TRAGUANET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Díez.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

The contributing editor for this article was Yongxiang Yang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: As a result of an error during the publication process, the graphic for Fig. 1 was mistakenly replaced with the graphic for Fig. 3 in the PDF version of this article as originally published. The PDF version of the article has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díez, E., Gómez, J.M., Rodríguez, A. et al. Recovery of Gallium from Aqueous Solution through Preconcentration by Adsorption/Desorption on Disordered Mesoporous Carbon. J. Sustain. Metall. 7, 227–242 (2021). https://doi.org/10.1007/s40831-021-00336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00336-4

Keywords

Navigation