Skip to main content
Log in

Dynamics-based optimization of rolling schedule aiming at dual goals of chatter suppression and speed increase for a 5-stand cold tandem rolling mill

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In the process of cold tandem rolling, chatter instability leads to serious impacts on enhancing rolling speed, improving product quality, reducing production cost and realizing intellectualization. Chatter occurs with the rolling speed up to a certain threshold value, but the critical speed is determined by both product specifications and rolling schedules. A 5-stand cold tandem rolling mill whose first three stands and subsequent two stands, respectively, have four and six rolls was investigated by formulating its dynamic equations with the corresponding structure–process coupling. By applying the stability-based calculation model about the critical rolling speed in each stand, the system dynamic responses around the critical rolling speed were simulated, and the system eigenvalues which represent instability and characteristic frequencies were figured out. Thereafter, via combining the critical rolling speeds with the system dynamic behavior, a dynamics-based optimization model of rolling schedule for the 5-stand cold tandem system was proposed for the purposes of both the chatter suppression and rolling speed increase. In the optimization model, eight rolling technique parameters (four strip thicknesses and four tensions between the upstream and downstream stands) were taken as design variables, and the constraint conditions were set as no chatter instability in all five stands, and the optimization goal was to maximize the outlet speed of the final stand. The pattern search method was introduced to solve the optimization model. By applying such a dynamics-based optimization model for the 5-stand cold tandem rolling process, the chatter instability was suppressed effectively and the rolling efficiency was improved considerably; therefore, such an optimization model is expected to be valuable for intelligent manufacturing of rolling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.F. Bryant, Automation of tandem mills, Iron and Steel Institute, London, UK, 1998.

    Google Scholar 

  2. M. Poursina, N.T. Dehkordi, A. Fattahi, H. Mirmohammadi, Simulat. Model Pract. Theory 22 (2012) 61–73.

    Article  Google Scholar 

  3. J.M. Yang, H.J. Che, Y.J. Xu, F.P. Dou, in: J. Wang, Z. Yi, J.M. Zurada, B.L. Lu, H. Yin (Eds.), Advances in Neural Networks - ISNN 2006. ISNN 2006, Lecture Notes in Computer Science, Vol. 3973, Springer, Berlin, Heidelberg, 2006, pp. 864–869.

  4. J.M. Yang, Q. Zhang, H.J. Che, X.Y. Han, J. Iron Steel Res. Int. 17 (2010) No. 11, 34–39.

    Article  Google Scholar 

  5. C.T.A. Pires, H.C. Ferreira, R.M. Sales, M.A. Silva, J. Mater. Process. Technol. 173 (2006) 368–375.

    Article  Google Scholar 

  6. S.Z. Chen, X. Zhang, L.G. Peng, D.H. Zhang, J. Sun, Y.Z. Liu, J. Cent. South Univ. 21 (2014) 1733–1740.

    Article  Google Scholar 

  7. D.J. Kim, Y.C. Kim, B.M. Kim, J. Mater. Process. Technol. 113 (2001) 131–135.

    Article  Google Scholar 

  8. H.Q. Liu, Q. Yang, D. Tang, H.T. Bian, J. Iron Steel Res. 20 (2008) No. 1, 54–58.

    Google Scholar 

  9. Y. Li, L. Fang, J. Iron Steel Res. Int. 24 (2017) 795–802.

    Article  Google Scholar 

  10. J.M. Yang, H.J. Che, F.P. Dou, T. Zhou, J. Iron Steel Res. Int. 15 (2008) No. 2, 18–22.

    Article  Google Scholar 

  11. A. Heidari, M.R. Forouzan, J. Adv. Res. 4 (2013) 27–34.

    Article  Google Scholar 

  12. P.H. Hu, H. Zhao, K.F. Ehmann, J. Eng. Manuf. 220 (2016) 1267–1277.

    Article  Google Scholar 

  13. M.R. Forouzan, I. Kiani, M.R. Niroomand, M. Salimi, Steel Res. Int. 79 (2008) 483–489.

    Google Scholar 

  14. M.R. Niroomand, M.R. Forouzan, M. Fasihfar, M. Salimi, Steel Res. Int. 81 (2010) 162–165.

    Google Scholar 

  15. X.D. Qi, T. Wang, H. Xiao, J. Iron Steel Res. Int. 19 (2012) No. 8, 25–28.

    Article  Google Scholar 

  16. K. Prinz, A. Steinboeck, A. Kugi, J. Process Contr. 64 (2018) 100–111.

    Article  Google Scholar 

  17. W. Peng, Y.F. Ji, X.R. Chen, D.H. Zhang, J. Northeast Univ. 40 (2019) 1408–1412.

    Google Scholar 

  18. D. Chen, J. Shao, S. Yin, Y.Q. Zhang, W. Zhang, T. Hu, Metall. Ind. Autom. 44 (2020) No. 6, 25–29+61.

    Google Scholar 

  19. Z.W. Jia, Y.H. Li, H.L. Zhang, X.L. Wang, Steel Rolling 37 (2020) No. 1, 42–44.

    Google Scholar 

  20. L.S. Fan, Z.H. Chen, J.Y. Zhu, Tool Engineering 54 (2020) No. 9, 75–77.

    Google Scholar 

  21. P.R. Prabhu, S.M. Kulkarni, S. Sharma, J. Mater. Res. Technol. 9 (2020) 11402–11423.

    Article  Google Scholar 

  22. Y. Wang, C.S. Li, X. Jin, Y.G. Xiang, X.G. Li, J. Manuf. Process. 60 (2020) 257–267.

    Article  Google Scholar 

  23. Z.Y. Gao, L.L. Bai, Q. Li, J. Mech. Eng. 53 (2017) 118–132.

    Article  Google Scholar 

  24. Z.Y. Gao, Y. Liu, Q.D. Zhang, M.L. Liao, B. Tian, Mech. Syst. Signal Process. 140 (2020) 106692.

  25. M.R. Niroomand, M.R. Forouzan, M. Salimi, M. Kafil, J. Vibroeng. 14 (2012) 852–865.

    Google Scholar 

  26. M.R. Niroomand, M.R. Forouzan, A. Heidari, Int. J. Adv. Manuf. Technol. 100 (2019) 673–682.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51775038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-yuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Zy., Tian, B., Liu, Y. et al. Dynamics-based optimization of rolling schedule aiming at dual goals of chatter suppression and speed increase for a 5-stand cold tandem rolling mill. J. Iron Steel Res. Int. 28, 168–180 (2021). https://doi.org/10.1007/s42243-020-00551-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00551-5

Keywords

Navigation