Skip to main content

Advertisement

Log in

Environmental assessment of energy-driven biorefineries: the case of the coffee cut-stems (CCS) in Colombia

  • LCA FOR AGRICULTURAL PRACTICES AND BIOBASED INDUSTRIAL PRODUCTS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Coffee cut-stems (CCS) are typically left in the field after coffee harvesting as fertilizer or used partially for cooking and drying of coffee grains. However, the energy contained in this residue is not completely exploited. For this reason, different applications for CCS have been considered to obtain innovative products. This work aims to evaluate the environmental impact of energy generation through two biorefinery systems using CCS as feedstock.

Methods

The life cycle assessment (LCA) considers a cradle-to-gate approach, beginning at the seed germination and ending at the production of ethanol, electricity, and low-pressure steam. Inventory data of the coffee production are collected from national reports. Mass and energy balances are calculated using an integrated methodological approach comprising the conceptual design and optimization of the CCS biorefineries.

Results and discussion

CCS production is one of the hotspots in both evaluated biorefineries due to the use of high amounts of fertilizers, contributing to most of the environmental impact categories. From the two assessed biorefinery configurations, the system with the lowest environmental benefits was the one that considered the generation of electricity and steam. Factors such as the high emissions of exhaust gases (mainly composed of CO2) and the use of water for steam generation were the main contributors. The alternative solution I (AS-I) has the lowest environmental impact in comparison with the base case. From the sensitivity analyses, the use of energy allocation approach provided better performance than the system expansion approach. However, the selection of one approach over the other highly depends on the evaluated impact category based on the uncertainty analysis.

Conclusions

The production of CCS has the highest contribution to the overall environmental impact of the evaluated biorefineries, and thus, we need available information of the coffee crop production including the production of co-products, such as CCS. We present a detailed inventory of the production of CCS in Colombia as an important contribution for further research in the area of coffee-based biorefineries. Based on our inventory, the production of bioenergy (electricity and steam) for a coffee-based biorefinery seems to provide the best environmental performance in comparison to the production of biofuels (ethanol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Althaus H, Hischier R, Osses M et al (2007) Life cycle inventories of chemicals. Ecoinvent Rep No 8(v20):1–957

    Google Scholar 

  • Arcila PJ, Farfán VF, Moreno BA et al (2010) Capítulo 4. Establecimiento del cafetal. In, Sistemas de producción de café en Colombia, pp 87–100

    Google Scholar 

  • Aristizábal-Marulanda V, Cardona ACA, Martín M (2019) An integral methodological approach for biorefineries design: Study case of Colombian coffee cut-stems. Comput Chem Eng 126:35–53

    Article  Google Scholar 

  • Marulanda VA (2015) Jet biofuel production from agroindustrial wastes through furfural platform. Universidad Nacional de Colombia. Departamento de Ingeniería Química. Master Thesis

  • Balat M, Balat M, Kırtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Convers Manag 50:3158–3168. https://doi.org/10.1016/j.enconman.2009.08.013

    Article  CAS  Google Scholar 

  • Barrera-Ramírez J, Prado V, Solheim H (2019) Life cycle assessment and socioeconomic evaluation of the illicit crop substitution policy in Colombia. J Ind Ecol 1–16 https://doi.org/10.1111/jiec.12917

  • Brommer E, Stratmann B, Quack D (2011) Environmental impacts of different methods of coffee preparation. Int J Consum Stud 35:212–220. https://doi.org/10.1111/j.1470-6431.2010.00971.x

    Article  Google Scholar 

  • Castro-Toro AM, Rivillas-Osorio CA, Serna-Giraldo CA, Mejía-Mejía CG (2008) Avances técnicos 368 Cenicafé. Construcción, manejo de Rhizoctonia solani y costos, Germinadores de café

    Google Scholar 

  • Catalán E, Komilis D, Sánchez A (2019) Environmental impact of cellulase production from coffee husks by solid-state fermentation: A life-cycle assessment. J Clean Prod 233:954–962. https://doi.org/10.1016/j.jclepro.2019.06.100

    Article  CAS  Google Scholar 

  • Centro Nacional de Investigaciones del Café (Cenicafé) (2004) Cartilla cafetera 4. Germinadores y almácigos de café

  • Centro Nacional de Investigaciones del Café (Cenicafé) (2016) Cultivemos café/Sistemas de producción. https://www.cenicafe.org/es/index.php/cultivemos_cafe/sistemas_de_produccion/cultivemos_cafe_libro_sistemas_de_produccion_de_cafe_establecimiento_del_ca Accessed June 2018

  • Chaudhary A, Verones F, De Baan L et al (2016) Chapter 11: Land stress: Potential species loss from land use (global; PSSRg). In: LC-Impact version 0.5. pp 90–101

  • Cherubini E, Franco D, Zanghelini GM, Soares SR (2018) Uncertainty in LCA case study due to allocation approaches and life cycle impact assessment methods. Int J Life Cycle Assess 23:2055–2070. https://doi.org/10.1007/s11367-017-1432-6

    Article  CAS  Google Scholar 

  • Cherubini F, Strømman AH, Ulgiati S (2011) Influence of allocation methods on the environmental performance of biorefinery products—a case study. Resour Conserv Recycl 55:1070–1077. https://doi.org/10.1016/j.resconrec.2011.06.001

    Article  Google Scholar 

  • Dalgaard R, Halberg N, Hermansen JE (2007) Danish pork production: An environmental assessment 82:1–38

    Google Scholar 

  • Departamento Administrativo Nacional de Estadísticas (DANE) (2017) Producto Interno Bruto en Colombia - Tercer Trimestre de 2017. In: www.dane.gov.co

  • Djekic I, Pojić M, Tonda A et al (2019) Scientific challenges in performing life-cycle assessment in the food supply chain. Foods 8. https://doi.org/10.3390/foods8080301

  • Farfán-Valencia F (1994) Avances técnicos 209. El zoqueo del café conserva el bosque nativo

  • Federación Nacional de Cafeteros de Colombia (2019) Economía Institucional del Café. In: Sobre café. Mucho más que una bebida. http://www.cafedecolombia.com/particulares/es/sobre_el_cafe/mucho_mas_que_una_bebida/economia_institucional_del_cafe/ Accessed: September 2019

  • Gaitan BAL, Villegas GC, Rivillas OCA et al (2011) Avances técnicos 404. Almacigos de cafe: Calidad fitosanitaria, manejo y siembra en el campo

  • Garcia CA, Hora G (2017) State-of-the-art of waste wood supply chain in Germany and selected European countries. Waste Manag 70:189–197. https://doi.org/10.1016/j.wasman.2017.09.025

    Article  Google Scholar 

  • García CA, Moncada J, Aristizábal V, Cardona CA (2017) Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee cut-stems case. Int J Hydrogen Energy 42:5849–5864. https://doi.org/10.1016/j.ijhydene.2017.01.073

    Article  CAS  Google Scholar 

  • García Velásquez CA (2016) Hydrogen production through gasification and dark fermentation. Universidad Nacional de Colombia. Departamento de Ingeniería Química. Master Thesis

  • González-García S, Moreira MT, Dias AC, Mola-Yudego B (2014) Cradle-to-gate life cycle assessment of forest operations in Europe: Environmental and energy profiles. J Clean Prod 66:188–198. https://doi.org/10.1016/j.jclepro.2013.11.067

    Article  Google Scholar 

  • Harris S, Narayanaswamy V (2009) A Literature Review of Life Cycle Assessment in Agriculture

  • Hassard HA, Couch MH, Techa-erawan T, McLellan BC (2014) Product carbon footprint and energy analysis of alternative coffee products in Japan. J Clean Prod 73:310–321. https://doi.org/10.1016/j.jclepro.2014.02.006

    Article  Google Scholar 

  • Stranddorf HK, Hoffmann L, Schmidt A (2005) Impact categories, normalisation and weighting in LCA. Environ News 78:1–90. Environmental project nr. 995

  • Heijungs R, Huijbregts MAJ (2004) A review of approaches to treat uncertainty in LCA. iEMSs 2004 Int Congr 8. http://www.iemss.org/iemss2004/pdf/lca/heijarev.pdf

  • Huijbregts MAJ (1998) Application of uncertainty and variability in LCA. Part I: A general framework for the analysis of uncertainty and variability in life cycle assessment. Int J Life Cycle Assess 3:273–280. https://doi.org/10.1007/BF02979835

    Article  Google Scholar 

  • Humbert S, Loerincik Y, Rossi V et al (2009) Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). J Clean Prod 17:1351–1358. https://doi.org/10.1016/j.jclepro.2009.04.011

    Article  Google Scholar 

  • IDEAM, PNUD, MADS, et al (2016) Inventario Nacional Y Departamental De Gases Efecto Invernadero - Colombia. Tercera. Bogotá D.C, Colombia

    Google Scholar 

  • International Coffee Organization (ICO) (2019) Total production by all exporting countries 2015–2018

  • International Energy Agency IEA (2017) Producing ammonia and fertilizers: New opportunities from renewables

  • Jacquemin L, Pontalier PY, Sablayrolles C (2012) Life cycle assessment (LCA) applied to the process industry: A review. Int J Life Cycle Assess 17:1028–1041. https://doi.org/10.1007/s11367-012-0432-9

    Article  CAS  Google Scholar 

  • Kookos IK (2018) Technoeconomic and environmental assessment of a process for biodiesel production from spent coffee grounds (SCGs). Resour Conserv Recycl 134:156–164. https://doi.org/10.1016/j.resconrec.2018.02.002

    Article  Google Scholar 

  • Lelek L, Kulczycka J, Lewandowska A, Zarebska J (2016) Life cycle assessment of energy generation in Poland. Int J Life Cycle Assess 21:1–14. https://doi.org/10.1007/s11367-015-0979-3

    Article  CAS  Google Scholar 

  • Maga D, Thonemann N, Hiebel M et al (2019) Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil. Int J Life Cycle Assess 24:266–280. https://doi.org/10.1007/s11367-018-1505-1

    Article  CAS  Google Scholar 

  • May B, England JR, Raison RJ, Paul KI (2012) Cradle-to-gate inventory of wood production from Australian softwood plantations and native hardwood forests: Embodied energy, water use and other inputs. For Ecol Manage 264:37–50. https://doi.org/10.1016/j.foreco.2011.09.016

    Article  Google Scholar 

  • de Melo FM, Silvestre A, Carvalho M (2019) Carbon footprint associated with electricity generation from biomass, syngas and diesel. Environ Eng Manag J 18:1391–1397

    Article  Google Scholar 

  • Mendoza Beltran A, Heijungs R, Guinée J, Tukker A (2016) A pseudo-statistical approach to treat choice uncertainty: The example of partitioning allocation methods. Int J Life Cycle Assess 21:252–264. https://doi.org/10.1007/s11367-015-0994-4

    Article  Google Scholar 

  • Muñoz I, Flury K, Jungbluth N et al (2014) Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int J Life Cycle Assess 19:109–119. https://doi.org/10.1007/s11367-013-0613-1

    Article  CAS  Google Scholar 

  • National Coffee Research Center (2015) Cenicafé generates electricity from coffee tree wood. https://www.federaciondecafeteros.org/algrano-fnc-en/index.php/comments/cenicafe_generates_electricity_from_coffee_tree_wood/. Accessed May 2018

  • Nemecek T, Kägi T (2007) Life Cycle Inventories of Agricultural Production Systems. ecoinvent Rep No 15 20:1–360

  • Nufarm (2010) Datasheet Mancozeb 80% WP

  • Pitt WW, Haag GL, Lee DD (1983) Recovery of ethanol from fermentation broths using selective sorption-desorption. Biotechnol Bioeng 25:123–131

    Article  CAS  Google Scholar 

  • Product Sustainability Forum (2013) Hotspots, opportunities & initiatives. Coffee. Improv Environ Perform Prod 1–30

  • Quintero Suárez JA (2011) Design and Evaluation of Fuel Alcohol Production from Lignocellulosic Raw Materials. Universidad Nacional de Colombia. Departamento de Ingeniería Eléctrica, Electrónica y Computación. Ph.D. Thesis

  • Raynolds M, Checkel MD, Fraser RA (1999) Application of Monte Carlo analysis to life cycle assessment. SAE Trans 108:1–9

    Google Scholar 

  • Razak AMY (2007) Industrial Gas Turbines: Performance and Operability

  • Dinero R (2017) Rentabilidad de la caficultura es del 25%: Federación de Cafeteros. https://www.dinero.com/Item/ArticleAsync/253186?nextId=253178. Accessed June 2018

  • Rincón LE, Becerra LA, Moncada J, Cardona CA (2014) Techno-economic analysis of the use of fired cogeneration systems based on sugar cane bagasse in south eastern and mid-western regions of Mexico. Waste and Biomass Valorization 5:189–198. https://doi.org/10.1007/s12649-013-9224-0

    Article  CAS  Google Scholar 

  • Rodríguez Valencia N, Zambrano Franco D (2010) Avance técnico 393. Los subproductos del café: Fuente de energía renovable. Av Técnicos Cenicafé 8. ISSN-0120–0178

  • Rossier D, Charles R (1998) Ecobilan: Adaptation de la méthode écobilan pour la gestion environnementale de l’exploitation agricole

  • Sadeghian S (2008) Guía práctica: Fertilidad del suelo y nutrición del café en Colombia. Boletín técnico No. 32

  • Sadeghian Khalajabadi S, González Osorio H (2012) Avances técnicos 424. Alternativas generales de fertilización para cafetales en la etapa de producción

  • Salomone R (2003) Life cycle assessment applied to coffee production: Investigating environmental impacts to aid decision making for improvements at company level. Food, Agric Environ 1:295–300

    Google Scholar 

  • Segura-Salazar J, Lima FM, Tavares LM (2019) Life Cycle Assessment in the minerals industry: Current practice, harmonization efforts, and potential improvement through the integration with process simulation. J Clean Prod 232:174–192. https://doi.org/10.1016/j.jclepro.2019.05.318

    Article  Google Scholar 

  • Segura MA, Andrade HJ (2012) Huella de carbono en cadenas productivas de café (Coffea arabica L.) con diferentes estándares de certificación en Costa Rica. Luna Azul 60–77. https://doi.org/10.17151/luaz.2012.35.5

  • Sepp J, Melanen M, Jouttij T et al (1998) Forest industry and the environment : A life cycle assessment study from Finland. Resour Conserv Recycl 23:87–105

    Article  Google Scholar 

  • Sharma AK (2011) Modeling and simulation of a downdraft biomass gasifier 1. Model development and validation. Energy Convers Manag 52:1386–1396. https://doi.org/10.1016/j.enconman.2010.10.001

    Article  CAS  Google Scholar 

  • Teillard F, Maia de Souza D, Thoma G et al (2016) What does Life-cycle assessment of agricultural products need for more meaningful inclusion of biodiversity? J Appl Ecol 53:1422–1429. https://doi.org/10.1111/1365-2664.12683

    Article  Google Scholar 

  • The Fertilizer Institute (2016) State of the Fertilizer Industry - Environment and Energy. In: Reduce, Reuse, Sustain. https://www.tfi.org/our-industry/state-of-industry/environment-energy. Accessed August 2018

  • Tuntiwiwattanapun N, Usapein P, Tongcumpou C (2017) The energy usage and environmental impact assessment of spent coffee grounds biodiesel production by an in-situ transesterification process. Energy Sustain Dev 40:50–58. https://doi.org/10.1016/j.esd.2017.07.002

    Article  Google Scholar 

  • Turconi R, Boldrin A, Astrup T (2013) Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew Sustain Energy Rev 28:555–565. https://doi.org/10.1016/j.rser.2013.08.013

    Article  CAS  Google Scholar 

  • Valencia NR (2000) Manejo de residuos en la agroindustria cafetera

  • Van Zelm R, Preiss P, Van Dingenen R, Huijbregts M (2016) Chapter 6: Particulate Matter Formation. In: LC-Impact version 0.5. pp 52–60

Download references

Acknowledgments

The authors express their acknowledgments to Departamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias) call 727 of 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Cardona Alzate.

Additional information

Communicated by Nydia Suppen-Reynaga.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristizábal-Marulanda, V., García-Velásquez, C.A. & Cardona Alzate, C.A. Environmental assessment of energy-driven biorefineries: the case of the coffee cut-stems (CCS) in Colombia. Int J Life Cycle Assess 26, 290–310 (2021). https://doi.org/10.1007/s11367-020-01855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-020-01855-0

Keywords

Navigation