Skip to main content
Log in

Partitions of correlated N-qubit systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The production and manipulation of quantum correlation protocols will play a central role where the quantum nature of the correlation can be used as a resource to yield properties unachievable within a classical framework is a very active and important area of research. In this work, we provide a description of a measure of correlation strength between quantum systems, especially for multipartite quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Horodecki, M., Oppenheim, J.: (Quantumness in the context of) resource theories. Int. J. Mod. Phys. B 27, 1345019 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  4. Postler, L., Rivas, Á., Schindler, P., Erhard, A., Stricker, R., Nigg, D., Monz, T., Blatt, R., Müller, M.: Experimental quantification of spatial correlations in quantum dynamics. Quantum 2, 90 (2018)

    Article  Google Scholar 

  5. Rivas, Á., Müller, M.: Quantifying spatial correlations of general quantum dynamics. New J. Phys. 17(6), 062001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Trapani, J., Teklu, B., Olivares, S., Paris, M.G.A.: Quantum phase communication channels in the presence of static and dynamical phase diffusion. Phys. Rev. A 92, 012317 (2015)

    Article  ADS  Google Scholar 

  7. Teklu, B., Trapani, J., Olivares, S., Paris, M.G.A.: Noisy quantum phase communication channels. Phys. Scr. 90, 074027 (2015)

    Article  ADS  Google Scholar 

  8. Adnane, H., Teklu, B., Paris, M.G.A.: Quantum phase communication channels with non-deterministic noiseless amplifier. J. Opt. Soc. Am. B 36, 2938–2945 (2019)

    Article  ADS  Google Scholar 

  9. Galindo, A., Martin-Delgado, M.A.: Information and Computation: Classical and Quantum Aspects Rev. Mod. Phys. 74, 347–423 (2002)

    Article  ADS  Google Scholar 

  10. Miguel A. Martin-Delgado. An Exclusion Principle for Sum-Free Quantum Numbers. https://arxiv.org/abs/2009.14491

  11. Li, N., Luo, S.: Total versus quantum correlations in quantum states. Phys. Rev. A 26, 032327 (2007)

    Article  ADS  Google Scholar 

  12. Barnett, S.M., Phoenix, S.J.D.: Entropy as a measure of quantum optical correlation. Phys. Rev. A 40, 2404 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. Barnett, S.M., Phoenix, S.J.D.: Information theory, squeezing, and quantum correlations. Phys. Rev. A 44, 535 (1991)

    Article  ADS  Google Scholar 

  14. Adami, von Cerf N.J. : Neumann capacity of noisy quantum channels. Phys. Rev. A 56, 3470 (1997)

  15. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. Horodecki, R.: Informationally coherent quantum systems. Phys. Lett. A 187, 145 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70 (1895)

    MATH  Google Scholar 

  19. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  20. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  21. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  22. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  23. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  25. Ollivier, H., Zurek, W.H.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  Google Scholar 

  26. Misra, A., Biswas, A., Pati, A.K., De Sen, A., Sen, U.: Quantum correlation with sandwiched relative entropies: advantageous as order parameter in quantum phase transitions. Phys. Rev. E 91, 052125 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Maziero, J., Cri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the \(XY\) spin-\(\frac{1}{2}\) chain. Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  29. Auccaise, R., Maziero, J., Céleri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimentally witnessing the quantumness of correlations. Phys. Rev. Lett. 107, 070501 (2011)

    Article  ADS  Google Scholar 

  30. Auccaise, R., Céleri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Maziero, J., Souza, A.M., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)

    Article  ADS  Google Scholar 

  31. Maziero, J., Céleri, L.C., Serra, R.M., Sarandy, M.S.: Long-range quantum discord in critical spin systems. Phys. Lett. A 18, 1540–1544 (2012)

    Article  ADS  Google Scholar 

  32. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)

    Article  ADS  Google Scholar 

  33. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  34. Madkok, V., Datta, A.: Quantum discord as a resource in quantum communication. Int. J. Mod. Phys. B 27, 1345041 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ferraro, A., Paris, M.G.A.: Nonclassicality criteria from phase-space representations and information-theoretical constraints are maximally inequivalent. Phys. Rev. Lett. 108, 260403 (2012)

    Article  ADS  Google Scholar 

  36. Barnett, S.M., Phoenix, S.J.D.: Information-theoretic limits to quantum cryptography. Phys. Rev. A 48, R5 (1993)

    Article  ADS  Google Scholar 

  37. Herbut, F.: On mutual information in multipartite quantum states and equality in strong subadditivity of entropy. J. Phys. A Math. Gen. 37, 3535 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  38. Maziero, J.: Distribution of mutual information in multipartite states. Braz. J. Phys. 44, 194 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

BT greatly acknowledges supports from the Centre for Cyber-Physical Systems (C2PS), Khalifa University, Abu Dhabi, UAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berihu Teklu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phoenix, S.J.D., Khan, F.S. & Teklu, B. Partitions of correlated N-qubit systems. Quantum Inf Process 20, 62 (2021). https://doi.org/10.1007/s11128-020-02968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02968-z

Keywords

Navigation