Skip to main content
Log in

Coupled two-qubit engine and refrigerator in Heisenberg model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have considered two-qubit Heisenberg XYZ model subject to an external magnetic field in the presence of the Dzyaloshinskii–Moriya (DM) anisotropic antisymmetric interaction as the working substance of the quantum Otto cycle. At first, a scheme is proposed for thermalization where working substance of the quantum Otto cycle is induced in the presence decoherence. The net work input and the efficiency of the engine are calculated in terms of system parameters. We investigate the effects of (DM) anisotropic antisymmetric interaction and external magnetic field on processes of the Otto cycle. An interesting phenomenon that the model reveals the mode of the cycle is a refrigerator or a heat engine. The results also enable us to determine for some values of parameters, the system is suitable for heat engine or refrigerator. Moreover, we find instances of regimes that the mode of the cycle is neither a refrigerator nor a heat engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geusic, J., Schulz-DuBios, E., Scovil, H.: Quantum equivalent of the carnot cycle. Phys. Rev. 156(2), 343 (1967)

    Article  ADS  Google Scholar 

  2. Scovil, H.E., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2(6), 262 (1959)

    Article  ADS  Google Scholar 

  3. Maruyama, K., Nori, F., Vedral, V.: Colloquium: the physics of Maxwells demon and information. Rev. Mod. Phys. 81(1), 1 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Scully, M.O.: Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett. 104(20), 207701 (2010)

    Article  ADS  Google Scholar 

  5. Huang, X., Wang, T., Yi, X., et al.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86(5), 051105 (2012)

    Article  ADS  Google Scholar 

  6. Quan, H.-T., Liu, Y.-X., Sun, C.-P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76(3), 031105 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  7. Wang, H., Liu, S., He, J.: Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. Phys. Rev. E 79(4), 041113 (2009)

    Article  ADS  Google Scholar 

  8. Zhao, L.-M., Zhang, G.-F.: Entangled quantum Otto heat engines based on two-spin systems with the Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16(9), 216 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  9. Azimi, M., Chotorlishvili, L., Mishra, S.K., Vekua, T., Hübner, W., Berakdar, J.: Quantum Otto heat engine based on a multiferroic chain working substance. New J. Phys. 16(6), 063018 (2014)

    Article  ADS  Google Scholar 

  10. Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93(14), 140403 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  11. Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines. ii. Phys. Rev. E 79(4), 041129 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83(3), 031135 (2011)

    Article  ADS  Google Scholar 

  13. Altintas, F., Hardal, A.Ü., Müstecaplıoglu, Ö.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90(3), 032102 (2014)

    Article  ADS  Google Scholar 

  14. Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. EPL 113(6), 60002 (2016)

    Article  ADS  Google Scholar 

  15. Lin, S., Song, Z.: Non-Hermitian heat engine with all-quantum-adiabatic-process cycle. J. Phys. A Math. Theor. 49(47), 475301 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  16. Hewgill, A., Ferraro, A., De Chiara, G.: Quantum correlations and thermodynamic performances of two-qubit engines with local and common baths. Phys. Rev. A 98(4), 042102 (2018)

    Article  ADS  Google Scholar 

  17. Roßnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352(6283), 325–329 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  18. Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119(5), 050602 (2017)

    Article  ADS  Google Scholar 

  19. Harris, S.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94(5), 053859 (2016)

    Article  ADS  Google Scholar 

  20. Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122(11), 110601 (2019)

    Article  ADS  Google Scholar 

  21. Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958)

    Article  ADS  Google Scholar 

  22. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4(5), 228 (1960)

    Article  ADS  Google Scholar 

  23. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79(4), 042319 (2009)

    Article  ADS  Google Scholar 

  24. Amniat-Talab, M., Jahromi, H.R.: On the entanglement and engineering phase gates without dynamical phases for a two-qubit system with Dzyaloshinski–Moriya interaction in magnetic field. Quantum Inf. Process. 12(2), 1185–1199 (2013)

    Article  ADS  Google Scholar 

  25. Li, D.-C., Wang, X.-P., Cao, Z.-L.: Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii–Moriya interaction. J. Phys. Condens. Matter 20(32), 325229 (2008)

    Article  Google Scholar 

  26. Türkpençe, D., Altintas, F.: Coupled quantum Otto heat engine and refrigerator with inner friction. Quantum Inf. Process. 18(8), 255 (2019)

    Article  ADS  Google Scholar 

  27. Mirmasoudi, F., Ahadpour, S.: Dynamics of super quantum discord and optimal dense coding in quantum channels. J. Phys. A Math. Theor. 51(34), 345302 (2018)

    Article  MathSciNet  Google Scholar 

  28. Zhang, G.-F.: Entangled quantum heat engines based on two two-spin systems with dzyaloshinski-moriya anisotropic antisymmetric interaction. The European Physical Journal D 49(1), 123 (2008)

    Article  ADS  Google Scholar 

  29. Alicki, R., Fannes, M.: Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87(4), 042123 (2013)

    Article  ADS  Google Scholar 

  30. Hovhannisyan, K.V., Perarnau-Llobet, M., Huber, M., Acín, A.: Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett. 111(24), 240401 (2013)

    Article  ADS  Google Scholar 

  31. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84(4), 1655 (2012)

    Article  ADS  Google Scholar 

  32. Milburn, G.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44(9), 5401 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  33. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Funding

Funding was provided by University of Mohaghegh Ardabili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sodeif Ahadpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahadpour, S., Mirmasoudi, F. Coupled two-qubit engine and refrigerator in Heisenberg model. Quantum Inf Process 20, 63 (2021). https://doi.org/10.1007/s11128-021-03019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03019-x

Keywords

Navigation