Skip to main content
Log in

Tuning of the Optical Properties of Monolayer Blue Phosphorene

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Blue and black phosphorus are the most stable allotropes of phosphorus family. As a new potential semiconductor material, blue phosphorene shows the advantage of its wide indirect bandgap. We investigate fundamental optical properties and tunability of the bandgap of monolayer blue phosphorene based on density functional theory. Our comparative analysis reveals the bandgap adjustability of blue P along the polarization direction and that the plasmons resonance mode of blue phosphorene in different polarization directions. Besides, we report a unique 2D rectangular semiconductor-metal hybrid nanostructures, the monolayer rectangle blue phosphorene inserted into the Au nanowires. Owing to surface plasmon polaritons (SPPs), the absorption spectra of blue phosphorene is broadened and shifted to the infrared region, in which strong characteristic peaks appear and the existence of the coupling of single electron motion and coherent vibration is proved. The results provide the novle principle for optical modulation of blue phosphorene and possible applications in nanoscale plasma devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666– 669

    Article  CAS  PubMed  Google Scholar 

  2. Geim AK, Grigorieva IV (2013) Van der waals heterostructures. Nature 499(7459):419–425

    Article  CAS  PubMed  Google Scholar 

  3. Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11(6):640–652

    Article  CAS  PubMed  Google Scholar 

  4. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8(4):4033–4041

    Article  CAS  PubMed  Google Scholar 

  5. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9(5):372

    Article  CAS  PubMed  Google Scholar 

  6. Carvalho A, Wang M, Zhu X, Rodin AS, Su H, Neto AHC (2016) Phosphorene: from theory to applications. Nature Reviews Materials 1(11):1–16

    Article  Google Scholar 

  7. Zhu Z, Tománek D (2014) Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett 112(17):176802

    Article  PubMed  Google Scholar 

  8. Chen C, Lu X, Deng B, Chen X, Guo Q, Li C, Ma C, Yuan S, Sung E, Watanabe K, et al. (2020) Widely tunable mid-infrared light emission in thin-film black phosphorus. Science Advances 6(7):eaay6134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buscema M, Groenendijk DJ, Blanter SI, Steele GA, Van Der Zant HS, Castellanos-Gomez A (2014) Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett 14(6):3347–3352

    Article  CAS  PubMed  Google Scholar 

  10. Guan J, Zhu Z, Tománek D (2014) Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys Rev Lett 113(4):046804

    Article  CAS  PubMed  Google Scholar 

  11. Wu M, Fu H, Zhou L, Yao K, Zeng XC (2015) Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family. Nano Lett 15(5):3557–3562

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Li X, Liu Z, Yang J (2017) ψ-phosphorene: a new allotrope of phosphorene. Phys Chem Chem Phys 19(3):2402–2408

    Article  CAS  PubMed  Google Scholar 

  13. Han WH, Kim S, Lee IH, Chang KJ (2017) Prediction of green phosphorus with tunable direct band gap and high mobility. J Phys Chem Lett 8(18):4627–4632

    Article  CAS  PubMed  Google Scholar 

  14. Zhang JL, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu CD, Yuan KD, et al. (2016) Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett 16(8):4903–4908

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh B, Nahas S, Bhowmick S, Agarwal A (2015) Electric field induced gap modification in ultrathin blue phosphorus. Phys Rev B 91(11):115433

    Article  Google Scholar 

  16. Xie J, Si M, Yang D, Zhang Z, Xue D (2014) A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. J Appl Phys 116(7):073704

    Article  Google Scholar 

  17. Peng Q, Wang Z, Sa B, Wu B, Sun Z (2016) Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der waals heterostructures. Scientific Reports 6:31994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aierken Y, Çakır D, Sevik C, Peeters FM (2015) Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Phys Rev B 92(8):081408

    Article  Google Scholar 

  19. Zhu L, Wang SS, Guan S, Liu Y, Zhang T, Chen G, Yang SA (2016) Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2d emergent fermions. Nano Lett 16(10):6548–6554

    Article  CAS  PubMed  Google Scholar 

  20. Du L, Zheng K, Cui H, Wang Y, Tao L, Chen X (2018) Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and f4tcnq/blue phosphorene heterostructures: a dft+ negf study. Phys Chem Chem Phys 20(45):28777–28785

    Article  CAS  PubMed  Google Scholar 

  21. Sun M, Chou JP, Yu J, Tang W (2017) Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. Phys Chem Chem Phys 19(26):17324–17330

    Article  CAS  PubMed  Google Scholar 

  22. Guebrou SA, Symonds C, Homeyer E, Plenet J, Gartstein YN, Agranovich VM, Bellessa J (2012) Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys Rev Lett 108(6):066401

    Article  PubMed  Google Scholar 

  23. Islam MA, Church J, Han C, Chung HS, Ji E, Kim JH, Choudhary N, Lee GH, Lee WH, Jung Y (2017) Noble metal-coated mos 2 nanofilms with vertically-aligned 2d layers for visible light-driven photocatalytic degradation of emerging water contaminants. Scientific Reports 7(1):1–10

    Article  Google Scholar 

  24. Wang Y, Kim JC, Wu RJ, Martinez J, Song X, Yang J, Zhao F, Mkhoyan A, Jeong HY, Chhowalla M (2019) Van der waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568(7750):70–74

    Article  CAS  PubMed  Google Scholar 

  25. Yue Y, Norikane Y (2020) Gold clay from self-assembly of 2d microscale nanosheets. Nat Commun 11(1):1–9

    Article  Google Scholar 

  26. Sun Y, Wang Y, Chen JY, Fujisawa K, Holder CF, Miller JT, Crespi VH, Terrones M, Schaak RE (2020) Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nat Chem 12(3):284–293

    Article  CAS  PubMed  Google Scholar 

  27. Liu C, Li H, Xu H, Zhao M, Xiong C, Zhang B, Wu K (2019) Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials. JOSA B 36(11):3060–3065

    Article  CAS  Google Scholar 

  28. Zhu Z, Chen C, Liu J, Han L (2018) The electronic and optical properties of au doped single-layer phosphorene. Russ J Phys Chem A 92(1):132–139

    Article  CAS  Google Scholar 

  29. Segall M, Lindan PJ, Ma Probert, Pickard CJ, Hasnip PJ, Clark S, Payne M (2002) First-principles simulation: ideas, illustrations and the castep code. J Phys Condens Matter 14(11): 2717

    Article  CAS  Google Scholar 

  30. Marques MA, Castro A, Bertsch GF, Rubio A (2003) Octopus: a first-principles tool for excited electron–ion dynamics. Comput Phys Commun 151(1):60–78

    Article  CAS  Google Scholar 

  31. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671

    Article  CAS  Google Scholar 

  32. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body green’s-function approaches. Rev Mod Phys 74(2):601

    Article  CAS  Google Scholar 

  33. Botti S, Schindlmayr A, Del Sole R, Reining L (2007) Time-dependent density-functional theory for extended systems. Rep Prog Phys 70(3):357

    Article  Google Scholar 

  34. Shu H, Wang Y, Sun M (2019) Enhancing electronic and optical properties of monolayer mose 2 via a mose 2/blue phosphorene heterobilayer. Phys Chem Chem Phys 21(28):15760–15766

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen-Truong HT (2019) Optical absorption and excitation spectra of monolayer blue phosphorene. J Phys Condens Matter 32(9):095702

    Article  PubMed  Google Scholar 

  36. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  PubMed  Google Scholar 

  37. Yan J, Yuan Z, Gao S (2007) End and central plasmon resonances in linear atomic chains. Phys Rev Lett 98(21):21602

    Article  Google Scholar 

  38. Yan J, Gao S (2008) Plasmon resonances in linear atomic chains: free-electron behavior and anisotropic screening of d electrons. Phys Rev B 78(23):235413

    Article  Google Scholar 

  39. Mishchenko E, Shytov A, Silvestrov P (2010) Guided plasmons in graphene p- n junctions. Phys Rev Lett 104(15):156806

    Article  CAS  PubMed  Google Scholar 

  40. Nilius N, Wallis T, Ho W (2002) Development of one-dimensional band structure in artificial gold chains. Science 297(5588):1853–1856

    Article  CAS  PubMed  Google Scholar 

  41. Yannouleas C, Broglia R (1991) Collective and single-particle aspects in the optical response of metal microclusters. Phys Rev A 44(9):5793

    Article  CAS  PubMed  Google Scholar 

  42. Yannouleas C, Vigezzi E, Broglia RA (1993) Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description. Phys Rev B 47(15):9849

    Article  CAS  Google Scholar 

  43. Bernath M, Yannouleas C, Broglia R (1991) Deformation effects in the optical response of small metal clusters. Phys Lett A 156(6):307–312

    Article  CAS  Google Scholar 

  44. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253

    Article  CAS  PubMed  Google Scholar 

  45. Tsai CY, Lin JW, Wu CY, Lin PT, Lu TW, Lee PT (2012) Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett 12(3):1648–1654

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Project supported by the National Key R&D Program of China (2017YFA0303600) and the National Natural Science Foundation of China (Grant No. 11974253) and Science Speciality Program of Sichuan University (Grant No.2020SCUNL210).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Jingzhi Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Code Availability

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, H. Tuning of the Optical Properties of Monolayer Blue Phosphorene. Plasmonics 16, 1213–1221 (2021). https://doi.org/10.1007/s11468-020-01350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01350-0

Keywords

Navigation