Skip to main content

Advertisement

Log in

Integrated use of archival aerial photogrammetry, GNSS, and InSAR data for the monitoring of the Patigno landslide (Northern Apennines, Italy)

  • Technical Notes
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The morphological changes of unstable areas can be identified using different methodologies that allow repeated surveys over time. The integration between the data obtained from different remote sensing and ground-based techniques, characterized by different coverage, resolution, and precision, allows to describe the kinematic motion of landslides with high accuracy and details. The aim of this work is to monitor the displacements of the Patigno landslide, a deep-seated gravitational slope deformation located in the Northern Apennines (Zeri, Massa Carrara, Italy), using archival aerial photogrammetry (1975–2010), continuous GNSS observations (2004–2018), and multi-temporal InSAR data (2015–2019). The results obtained adopting the different techniques were cross-validated and integrated in order to better explain the kinematics of the landslides: the GNSS data analysis shows horizontal movements of about 43 mm/yr in the S-E direction and vertical deformations of 6.5 mm/yr, in agreement with the average displacement rates obtained from photogrammetry and InSAR processing. The analysis of multi-temporal aerial photogrammetric images allowed us to observe three sectors of the landslide body characterized by different velocities rates and planimetric directions, in agreement with the LOS InSAR displacement field. Furthermore, the correlation between the rainfall distribution and the GNSS time series shows an acceleration of the sliding movements after about 3–4 months of a strong rainfall period. This integrated approach allowed us to overcome the limitations of each technique and to provide a 44-year long monitoring of the Patigno landslide. We also show that a synergic use of ground-based and remote sensing methodologies can provide useful information for the planning of more effective landslide risk mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Achilli V, Carrubba P, Fabris M, Menin A, Pavanello P (2015) An archival geomatics approach in the study of a landslide. Appl Geom. 7(4):263–273. https://doi.org/10.1007/s12518-015-0153-4

    Article  Google Scholar 

  • Anderlini L, Serpelloni E, and Belardinelli ME (2016) Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy). Geophys Res Lett 43(9)4321–4329. https://doi.org/10.1002/2016GL068604

  • Baldi P, Cenni N, Fabris M, Zanutta A (2008) Kinematics of a landslide derived from archival photogrammetry and GPS data. Geomorphology 102(3–4):435–444. https://doi.org/10.1016/j.geomorph.2008.04.027

    Article  Google Scholar 

  • Bortolotti V, Fazzuoli M, Pandeli E, Principi G, Babbini A, Corti S (2001) Geology of central and eastern Elba Island, Italy. Ofioliti 26:97–150

    Google Scholar 

  • Bos MS, Fernandes RMS, Williams SDP, Bastos L (2013) Fast error analysis of continuous GNSS observations with missing data. J Geod 87(4):351–360. https://doi.org/10.1007/s00190-012-0605-0

    Article  Google Scholar 

  • Calò F, Ardizzone F, Castaldo R, Lollino P, Tizzani P, Guzzetti F, Lanari R, Angeli MG, Pontoni F, Manunta M (2014) Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy. Remote Sens Environ 142:69–82. https://doi.org/10.1016/j.rse.2013.11.003

    Article  Google Scholar 

  • Carmignani L, Decandia FA, Disperati L, Fantozzi PL, Kligfield R, Lazzarotto A, Liotta D, Meccheri M (2001) Inner northern Apennines. In: Vai G, Martini P (eds) Anatomy of an orogen: the Apennines and adjacent Mediterranean Basins. Kluwer, Academic Publishers, Dordrecht, pp 197–214

    Google Scholar 

  • Cenni N, Mantovani E, Baldi P, Viti M (2012) Present kinematics of Central and Northern Italy from continuous GPS measurements. J Geodyn 58:62–72

    Article  Google Scholar 

  • Cenni N, Viti M, Baldi P, Mantovani E, Bacchetti M, Vannucchi A (2013) Present vertical movements in central and northern Italy from GPS data: possible role of natural and anthropogenic causes. J Geodyn 71:74–85

    Article  Google Scholar 

  • Cenni N, Viti M, Mantovani E (2015) Space geodetic data (GPS) and earthquake forecasting: examples from the Italian geodetic network. Boll Geofis Teor Appl 56(2):129–150. https://doi.org/10.4430/bgta0139

    Article  Google Scholar 

  • Cheloni D, Giuliani R, D’Agostino N, Mattone M, Bonano M, Fornaro G, Lanari R, Reali D, Atzori S (2016) New insights into fault activation and stress transfer between en echelon thrusts: the 2012 Emilia, Northern Italy, earthquake sequence. J Geophys Res Solid Earth 121(6):4742–4766. https://doi.org/10.1002/2016JB012823

    Article  Google Scholar 

  • Cina A, Piras M (2015) Performance of low-cost GNSS receiver for landslides monitoring: test and results, Geomatics. Nat Hazards and Risk 6(5-7):497–514. https://doi.org/10.1080/19475705.2014.889046

    Article  Google Scholar 

  • Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng Geol 68:3–14

    Article  Google Scholar 

  • Corominas J, Moya J, Lloret A, Gili J, Angeli M, Pasuto A, Silvano S (2000) Measurement of landslide displacements using a wire extensometer. Eng Geol 55:149–166

    Article  Google Scholar 

  • Cotecchia V, Grassi D, Merenda L (1995) Fragilità dell’area urbana occidentale di Ancona dovuta a movimenti di massa profondi e superficiali ripetutisi nel 1982. Geol Appl Idrogeol 30:633–657

    Google Scholar 

  • Del Soldato M, Solari L, Poggi F, Raspini F, Tomás R, Fanti R, Casagli N (2019) Landslide-induced damage probability estimation coupling InSAR and field survey data by fragility curves. Remote Sens 11(12):1486. https://doi.org/10.3390/rs11121486

  • Di Naccio D, Boncio P, Brozzetti F, Pazzaglia FJ, Lavecchia G (2013) Morphotectonic analysis of the Lunigiana and Garfagnana grabens (northern Apennines, Italy): Implications for active normal faulting. Geomorphology 201:293–311. https://doi.org/10.1016/j.geomorph.2013.07.003

    Article  Google Scholar 

  • Dreyfus D, Rathjea EM, Jibson RW (2013) The influence of different simplified sliding-block models and inputparameters on regional predictions of seismic landslides triggered by the Northridge earthquake. Eng Geol 163:41–54. https://doi.org/10.1016/j.enggeo.2013.05.015

    Article  Google Scholar 

  • Esposito A, Galvani A, Sepe V, Atzori S, Brandi G, Cubellis E, De Martino P, Dolce M, Massucci A, Obrizzo F, Pietrantonio G, Riguzzi F, Tammaro U (2020) Concurrent deformation processes in the Matese massif area (Central-Southern Apennines, Italy). Tectonophysics 774:228234. https://doi.org/10.1016/j.tecto.2019.228234

  • Fabris M (2019) Coastline evolution of the Po River Delta (Italy) by archival multi-temporal digital photogrammetry. Geom, Nat Hazards and Risk 10(1):1007–1027. https://doi.org/10.1080/19475705.2018.1561528

    Article  Google Scholar 

  • Fabris M, Pesci A (2005) Automated DEM extraction in digital aerial photogrammetry: precisions and validation for mass movement monitoring. Ann Geophys 48(6):57–72. https://doi.org/10.4401/ag-3247

    Article  Google Scholar 

  • Fabris M, Baldi P, Anzidei M, Pesci A, Bortoluzzi G, Aliani S (2010) High resolution topographic model of Panarea island by fusion of photogrammetric, lidar and bathymetric Digital Terrain Models. Photogramm Rec 25(132):382–401. https://doi.org/10.1111/j.1477-9730.2010.00600.x

    Article  Google Scholar 

  • Fanti R, Gigli G, Lombardi L, Tapete D, Canuti P (2013) Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 10(4):409–420. https://doi.org/10.1007/s10346-012-0329-5

    Article  Google Scholar 

  • Federici P, Puccinelli A, Chelli A, D’Amato Avanzi G, Ribolini A, Verani M (2000) La grande frana di Patigno di Zeri (Massa-Carrara). Memorie della Accademia Lunigianese di Scienze Giovanni Capellini. Scienze Naturali Fisiche e Matematiche 70:31–41

  • Federici PR, Puccinelli A, Chelli A, D’Amato AG, Ribolini A, Verani M (2002) The large landslide of Patigno (Northern Apennines, Italy): geological, geomorphological and geognostic integrated analysis. In: Rybar J, Stemberg J, Wagner P (eds) Landslides. Swets and Zeitlinger, Lisse, pp 547–552

    Google Scholar 

  • Feng ZY, Huang HY, Chen SC (2020) Analysis of the characteristics of seismic and acoustic signals produced by a dam failure and slope erosion test. Landslides 17(7):1605–1618. https://doi.org/10.1007/s10346-020-01390-x

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • Fiaschi S, Mantovani M, Frigerio S, Pasuto A, Floris M (2017) Testing the potential of Sentinel-1 TOPS interferometry for the detection and monitoring of landslides at local scale, Veneto Region, Italy. Environ Earth Sci 76(492). https://doi.org/10.1007/s12665-017-6827-y

  • Fiaschi S, Fabris M, Floris M, Achilli V (2018) Estimation of land subsidence in deltaic areas through differential SAR interferometry: the Po River Delta case study (NE Italy). Int J Remote Sens 39(23):8724–8745. https://doi.org/10.1080/01431161.2018.1490977

    Article  Google Scholar 

  • Frigerio S, Schenato L, Bossi G, Cavalli M, Mantovani M, Marcato G, Pasuto A (2014) A web-based platform for automatic and continuous landslide monitoring: the Rotolon (Eastern Italian Alps) case study. Comput Geosci 63:96–105. https://doi.org/10.1016/j.cageo.2013.10.015

    Article  Google Scholar 

  • Frodella W, Ciampalini A, Gigli G, Lombardi L, Raspini F, Nocentini M, Scardigli C, Casagli N (2016) Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 264:80–94

    Article  Google Scholar 

  • Glansch J, Heunecke O, Schuhbäck S (2009) Monitoring the Hornbergl landslide using a recently developed low cost GNSS sensor network. Jof Applied Geodesy 3:179–1926. https://doi.org/10.1515/JAG.2009.019

    Article  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Springer Science & Business Media: Dordrecht, Netherland

  • He X, Montillet JP, Fernandes R, Bos M, Yu K, Hua X, Jiang W (2017) Review of current GPS methodologies for producing accurate time series and their error sources. J Geodyn 106(February):12–29. https://doi.org/10.1016/j.jog.2017.01.004

    Article  Google Scholar 

  • Herring, T.A., King, R.W., Floyd, M.A. & McClusky, S.C., 2018. GAMIT Reference Manual, GPS Analysis at MIT, Release 10.7. Department of Earth, Atmospheric and Planetary Sciences, Massachusset Institute of Technology, Cambridge

  • Inventario Fenomeni Franosi Italia – ISPRA 2020 http://www.isprambiente.gov.it/it/progetti/suolo-e-territorio-1/iffi-inventario-dei-fenomeni-franosi-in-italia. accessed on 6 August, 2020

  • ISIDe Working Group. (2007). Italian Seismological Instrumental and Parametric Database (ISIDe). Istituto Nazionale di Geofisica e Vulcanologia (INGV) https://doi.org/10.13127/ISIDE

  • Kean, JW, Coe JA, Coviello V, Smith JB, Mccoy, SW, Arattano M, (2015). Estimating rates of debris flow entrainment from ground vibrations. https://doi.org/10.1002/2015GL064811, Estimating rates of debris flow entrainment from ground vibrations.

  • Klos A, Bos M S, Fernandes R M S, Bogusz J (2019) Noise-dependent adaption of the wiener filter for the GPS position time series. Math Geosci 51(1):53–73. https://doi.org/10.1007/s11004-018-9760-z

  • Komac M, Holley R, Mahapatra P, van der Marel H, Bavec M (2015) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 12(2):241–257. https://doi.org/10.1007/s10346-014-0482-0

    Article  Google Scholar 

  • Liu D, Leng X, Wei F, Zhang S, Hong Y (2018) Visualized localization and tracking of debris flow movement based on infrasound monitoring. Landslides 15(5):879–893. https://doi.org/10.1007/s10346-017-0898-4

    Article  Google Scholar 

  • Manconi A, Picozzi M, Coviello V, De Santis F, Elia L (2016) Real-time detection, location, and characterization of rockslides using broadband regional seismic networks. Geophys Res Lett 43(13):6960–6967. https://doi.org/10.1002/2016GL069572

    Article  Google Scholar 

  • Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104(B2):2797–2816. https://doi.org/10.1029/1998JB900033

    Article  Google Scholar 

  • Pesci A, Baldi P, Bedin A, Casula G, Cenni N, Fabris M, Mora P, Bacchetti M (2004) Digital elevation models for landslide evolution monitoring: Application on two areas located in the Reno River Valley (Italy). Ann Geophys 47(4)

  • Pesci A, Teza G, Casula G (2009) Improving strain rate estimation from velocity data of non-permanent GPS stations: The central Apennine study case (Italy). GPS Solutions 13(4):249–261. https://doi.org/10.1007/s10291-009-0118-3

    Article  Google Scholar 

  • Raiti R, Signanini P, Torrese P, Sammartino P (2006) II metodo della ricollocazione nella risoluzione di problematiche geologicoambientali: Il caso di Zeri (Massa-Carrara). G Di Geol Appl 3:213–220

    Google Scholar 

  • Refice A, Campolongo D (2002) Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Comput Geosci 28(6):735–749. https://doi.org/10.1016/S0098-3004(01)00104-2

    Article  Google Scholar 

  • Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (2020) The Italian earthquake catalogue CPTI15. Bull Earthq Eng 18(7):2953–2984. https://doi.org/10.1007/s10518-020-00818-y

    Article  Google Scholar 

  • Serpelloni E, Anderlini L, Belardinelli ME (2012) Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, M w 6.3, L’Aquila earthquake from inversion of GPS displacements. Geophys J Int 188(2):473–489. https://doi.org/10.1111/j.1365-246X.2011.05279.x

    Article  Google Scholar 

  • Stucchi E, Ribolini A, Anfuso A (2014) High-resolution reflection seismic survey at the Patigno landslide, Northern Apennines, Italy. Near Surf Geophys 12(4):559–571. https://doi.org/10.3997/1873-0604.2013036

  • Takasu, T. (2013). RTKLIB: An open source program package for GNSS positioning. Software and documentation available at: http://www.rtklib.com, accessed on 6 August, 2020

  • Teza G, Pesci A, Galgaro A (2008) Grid_strain and grid_strain3: Software packages for strain field computation in 2D and 3D environments. Comput Geosci 34(9):1142–1153. https://doi.org/10.1016/j.cageo.2007.07.006

    Article  Google Scholar 

  • Umar Z, Pradhan B, Ahmad A, Neamah JM, Shafapour TM (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena 118:124–135. https://doi.org/10.1016/j.catena.2014.02.005

    Article  Google Scholar 

  • Wang W, Zhao B, Wang Q, Yang S (2012) Noise analysis of continuous GPS coordinate time series for CMONOC. Adv Space Res 49(5):943–956. https://doi.org/10.1016/j.asr.2011.11.032

    Article  Google Scholar 

  • Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released, EOS Trans. AGU 94(45):409–410. https://doi.org/10.1002/2013EO450001

    Article  Google Scholar 

  • Yan Y, Cui Y, Tian X, Hu S, Guo J, Wang Z, Yin S, Liao L (2020) Seismic signal recognition and interpretation of the 2019 “7.23” Shuicheng landslide by seismogram stations. Landslides 17(5):1191–1206. https://doi.org/10.1007/s10346-020-01358-x

    Article  Google Scholar 

  • Zhang Y, Tang H, Li C, Lu G, Cai Y, Zhang J, Tan F (2018) Design and testing of a flexible inclinometer probe for model tests of landslide deep displacement measurement. Sensors 18:224

Download references

Acknowledgements

The authors would like to thank Prof. Enzo Mantovani, Prof. Dario Albarello, and Dr. Marcello Viti of Department of Physical Sciences, Earth and Environment of the University of Siena for providing the GNSS data. The authors would also like to thank Dr. Massimo Baglione, Dr. Vittorio D’Intinosante, and Dr. Pierangelo Fabbroni of the Servizio Sismico-Regione Toscana for providing the archival aerial photogrammetric surveys of 2010 and 2013. Several figures (Fig. 1 inset, 3, 4, 7) were generated with the Generic Mapping Tools (Wessel et al. 2013). The authors deeply thank the reviewers and the editor for their constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

Nicola Cenni—GNSS data processing, multi-technique approach, data interpretation, and writing of the manuscript

Simone Fiaschi—InSAR data processing, data interpretation, and writing of the manuscript

Massimo Fabris—Aerial photogrammetric data processing, data interpretation, and writing of the manuscript

Corresponding author

Correspondence to Nicola Cenni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cenni, N., Fiaschi, S. & Fabris, M. Integrated use of archival aerial photogrammetry, GNSS, and InSAR data for the monitoring of the Patigno landslide (Northern Apennines, Italy). Landslides 18, 2247–2263 (2021). https://doi.org/10.1007/s10346-021-01635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01635-3

Keywords

Navigation