Skip to main content
Log in

Identity and biocontrol efficiency of Trichoderma spp. isolated from different soils and ecosystems in Algeria

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Forty-six strains of Trichoderma spp. have been isolated from soils in different locations and ecosystems of Algeria. They were identified at species level by analysis of their Internal Transcribed Spacers regions 1 and 2 (ITS1 and ITS2) of rDNA and a partial sequence of the Translation Elongation Factor 1-alpha (TEF 1-α) gene. The 46 Trichoderma spp. were assigned to Trichoderma atroviride (12 strains), T. gamsii (10), T. orientale (1) and 23 to T. harzianum species complex (T. harzianum, T. afroharzianum, T. atrobrunneum and T. guizhouense). In the present study we highlight that T. gamsii, T. orientale, T. atrobrunneum and T. guizhouense are being reported for the first time in Algeria. Trichoderma spp. isolates growth was evaluated at temperatures ranging from 10 to 40 °C on PDA medium. The optimum growth was recorded at 25 °C and 30 °C, and only T. orientale was able to grow at 40 °C. The in vitro test revealed the potential antagonist of Trichoderma spp. isolates against four pathogenic species associated with strategic crops in Algeria, Fusarium culmorum, Botrytis cinerea, Alternaria solani and Rhizoctonia solani. In direct confrontation, the growth rate inhibition was ranked between 37.22% and 80.95% while in indirect confrontation was between 00% and 88.89%. The biocontrol assay carried out on wheat plant showed that T. atroviride (Ta.09), T. orientale (To.15), T. afroharzianum (T af. 17 and T af. 37) and T. gamsii (T g. 39) performed well against F. culmorum the crown rot and head blight pathogen of wheat in Algeria. This finding is based on the significant decrease in disease severity compared to the control (> 82%). Data recorded, have also shown that T. atroviride Ta.09 recorded the highest percentage of disease reduction (97.28%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdallah-Nekache N, Laraba I, Ducos C, Barreau C, Bouznad Z, Boureghda H (2019) Occurrence of Fusarium head blight and Fusarium crown rot in Algerian wheat: identification of associated species and assessment of aggressiveness. Eur J Plant Pathol 154:1–14. https://doi.org/10.1007/s10658-019-01673-7

    Article  CAS  Google Scholar 

  • Aleandri MP, Chilosi G, Bruni N, Tomassini A, Vettraino AM, Vannini A (2015) Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Prot 67:269–278. https://doi.org/10.1016/j.cropro.2014.10.023

    Article  Google Scholar 

  • Almeida KA, Armesto C, Monteiro FP, de Souza JT (2018) Diversity of Trichoderma species isolated from dead branches and sapwood of theobroma cacao trees. Trop Plant Pathol 43:90–94. https://doi.org/10.1007/s40858-017-0191-z

    Article  Google Scholar 

  • Benhamou N, Chet I (1996) Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: Ultrastructural and cytochemical aspects of the interaction. Phytopathol 86:405–416

    Article  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Benttoumi N, Colagiero M, Sellami S, Boureghda H, Keddad A, Ciancio A (2020) Diversity of nematode microbial antagonists from Algeria shows occurrence of nematotoxic Trichoderma spp. Plants 9:941. https://doi.org/10.3390/plants9080941

    Article  CAS  PubMed Central  Google Scholar 

  • Bissett J (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can J Bot 62:924–931

    Article  Google Scholar 

  • Bissett J (1991a) A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot 69:2357–2372

  • Bissett J (1991b) A revision of the genus Trichoderma. III. Section Pachybasium. Can J Bot 69:2373–2417

  • Bissett J (1991c) A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can J Bot 69:2418–2420

  • Bissett J, Gams W, Jaklitsch W, Samuels GJ (2015) Accepted Trichoderma names in the year 2015. IMA Fungus 6:263–295. https://doi.org/10.5598/imafungus.2015.06.02.02

    Article  PubMed  PubMed Central  Google Scholar 

  • Boureghda H, Bouznad Z, Decock C (2008) Cultural and molecular characterizations of some isolates of Trichoderma spp. Arab J Pl Prot 26:75–80

    Google Scholar 

  • Boureghda H, Bouznad Z (2009) Biological control of fusarium wilt of chickpea using isolates of Trichoderma atroviride, T. harzianum and T. longibrachiatum. Acta Phytopathol Entomol Hung 44:25–38. https://doi.org/10.1556/APhyt.44.2009.1.4

    Article  Google Scholar 

  • Chaverri P, Samuels GJ (2004) Hypocrea/ Trichoderma (Ascomycota, Hypocreales, Hypocreacea): Species with green ascospores. Stud Mycol 48:1–116

    Google Scholar 

  • Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycol 107:558–590. https://doi.org/10.3852/14-147

    Article  CAS  Google Scholar 

  • Chen JL, Sun SZ, Miao CP, Wu K, Chen YW, Xu LH, Guan HL, Zhao LX (2016) Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res 40:315–324

    Article  PubMed  Google Scholar 

  • Debbi A, Boureghda H, Monte E, Hermosa R (2018) Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp. Front Microbiol 9:282

    Article  PubMed  PubMed Central  Google Scholar 

  • Demirci E, Dane E (2003) Identification and pathogenicity of Fusarium spp. from stem bases of winter wheat in Erzurum. Turk Phytoparasit 31:170–173. https://doi.org/10.1007/BF02980787

    Article  Google Scholar 

  • Dendouga W, Boureghda H, Belhamra M (2016) Biocontrol of Wheat Fusarium Crown and Root Rot by Trichoderma spp. and Evaluation of Their Cell Wall Degrading Enzymes Activities. Acta Phytopathol Entomol Hung 51:1–12

    Article  CAS  Google Scholar 

  • Druzhinina I, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B 6(2):100–112

  • Druzhinina IS, Koptchinski AG, komon M, Bisset J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Hypocrea and Trichoderma. Fungal Genet Biol 42:813–828

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina I, Kopchinskiy A, Kubicek C (2006) The first 100 Trichoderma species characterized by molecular data. Mycosci 47:55–64. https://doi.org/10.1007/s10267-006-0279-7

    Article  CAS  Google Scholar 

  • Druzhinina I, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759. https://doi.org/10.1038/nrmicro2637

    Article  CAS  PubMed  Google Scholar 

  • du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K (2018) The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycol 110:559–583. https://doi.org/10.1080/00275514.2018.1463059

    Article  Google Scholar 

  • El-Enany AM, Abbas EEA, Zayed MA, Atia MM (2019) Effciency of some biological and chemical treatments against wheat root and crown rot disease. Zagazig J Agricult Res 46:1901–1918. https://doi.org/10.21608/zjar.2019.51903

    Article  Google Scholar 

  • Gams W, Bissett J (1998) Morphology and identification of Trichoderma. In: kubicek CP, Harman GE (ed) Trichoderma and Gliocladium, Vol 1. Basic biology, taxonomy and genetics. Taylor & Francis, London, p 3–25

  • Goh J, Nam B, Lee JS, Mun HY, Oh Y, Lee HB, Chung N, Choi YJ (2018) First report of six Trichoderma species isolated from freshwater environment in Korea. Korean J Mycol 46:213–225. https://doi.org/10.4489/KJM.20180027

    Article  Google Scholar 

  • Grey WE, Mathre DE (1988) Evaluation of spring barleys for reaction of Fusarium culmorum seedling blight and root rot. Can J Plant Sci 68:23–30

    Article  Google Scholar 

  • Grondona I, Hermosa R, Tejada M, Gomis MD, Mateos PF, Bridge PD, Monte E, Garcia-Acha I (1997) Physiological and Biochemical Characterization of Trichoderma harzianum, a Biological Control Agent against Soilborne Fungal Plant Pathogens. Appl Environ Microbiol 63:3189–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichodderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hibar K, Daami-Remadi M, Jabnoun-Khiareddine H, El M (2005) Effet inhibiteur in vitro et in vivo du Trichoderma harzianum sur Fusarium oxysporum f. sp. Radicis-lycopersici Biotechnol Agron Soc Environ 9:163–171

    Google Scholar 

  • Hicks E, Bienkowski D, Braithwaite M, Mclean K, Falloon R, Stewart A (2014) Trichoderma strains suppress Rhizoctonia diseases and promote growth of potato. Phytopathol Mediterr 53:502–514. https://doi.org/10.14601/Phytopathol_Mediterr-14476

    Article  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Jaklitsch WM, Samuels GJ, Dodd SL, Lu BS, Druzhinina IS (2006) Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Stud Mycol 55:135–177. https://doi.org/10.3114/sim.2006.56.04

    Article  Google Scholar 

  • Kacprzak M, Rosikon K, Fijalkowski K, Grobelak A (2014) The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus,Salix sp., Phalaris arundinacea, and Panicum virgatum. Appl Environ Soil Sci 2:1–10. https://doi.org/10.1155/2014/506142

    Article  CAS  Google Scholar 

  • Kamala T, Indira Devi S, Chandradev Sharma K, Kennedy K (2015) Phylogeny and taxonomical investigation of Trichoderma spp. from Indian region of Indo-Burma biodiversity hot spot region with special reference to Manipur. Biomed Res Int 285261:1–21. https://doi.org/10.1155/2015/285261

    Article  Google Scholar 

  • Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genetics and Biology: 310–319

  • Laraba I, Boureghda H, Abdallah N, Bouaicha O, Obanor F, Moretti A, Geiser DM, Kim HS, McCormick SP, Proctor RH, Kelly AC, Ward TJ, O’Donnell K (2017) Population genetic structure and mycotoxin potential of the wheat crown rot and head blight pathogen Fusarium culmorum in Algeria. Fungal Genet Biol 103:34–41. https://doi.org/10.1016/j.fgb.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Taylor JW (1990) Isolation of DNA from fungal mycelia and single Spores. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 282–287

    Google Scholar 

  • Mahmoud AF (2016) Genetic variation and biological control of fusarium graminearum isolated from wheat in Assiut-Egypt. Plant Pathol J 32:145–156. https://doi.org/10.5423/PPJ.OA.09.2015.0201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokhtari W, Chtaina N, Halmschlager E, Volgmayr H, Stauffer C, Jaklitsch W (2017) Potential antagonism of some Trichoderma strains isolated from Moroccan soil against three phytopathogenic fungi of great economic importance. Rev Mar Sci Agron 5:248–254

    Google Scholar 

  • Morales-Rodríguez C, Bastianelli G, Aleandri M, Chilosi G, Vannini A (2018) Application of Trichoderma spp. complex and biofumigation to control damping-off of Pinus radiata D. Don caused by Fusarium circinatum Nirenberg and O’Donnell. Forests 9:421

  • Naher L, Umi kalsom Y, Ahmad I, Kausar H (2014) Trichoderma spp.: A biocontrol agent for sustainable management of plant diseases. Pak J Bot 46:1489–1493

    Google Scholar 

  • Olivier JM, Germain R (1983) Etude des antibiotiques volatils des Trichoderma. In: INRA (ed) Les antagonismes microbiens mode d’action et application à la lutte biologique contre les maladies des plantes, 24ème colloque de la société française de phytopathologie, Bordeaux, p 17–34

  • Oskiera M, Szczech M, Bartoszewski G (2015) molecular identification of trichoderma strains collected to develop plant growth-promoting and biocontrol agents. J Horticult Res 23(1):75–86. https://doi.org/10.2478/johr-2015-0010

    Article  CAS  Google Scholar 

  • Pasquali M, Spanu F, Scherm B, Balmas V, Hoffmann L, Hammond-Kosack KE, Beyer M, Migheli Q (2013) fcstua from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner. PLoS One 8:E57429. https://doi.org/10.1371/Journal.Pone.0057429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapilly F (1968) Les techniques de mycologie en pathologie végétale. In: Annales des épiphyties, vol 19. INRA, Paris, p 102

  • Redda ET, Ma J, Mei J, Li M, Wu B, Jiang X (2018) Antagonistic potential of different isolates of Trichoderma against Fusarium oxysporum, Rhizoctonia solani and Botrytis cinerea. Eur Exp Biol 8(2):12. https://doi.org/10.21767/2248-9215.100053

    Article  CAS  Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  • Rinu K, Sati P, Pandey A (2013) Trichoderma gamsii NFCCI 2177): A newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54:408–417. https://doi.org/10.1002/jobm.201200579

    Article  CAS  PubMed  Google Scholar 

  • Roberti R, Flori P, Pisi A, Brunelli A, Cesari A (2000) Evaluation of biological seed treatment of wheat for the control of seed-borne Fusarium culmorum. J Plant Dis Prot 107:484–493. https://www.jstor.org/stable/43215351

  • Sadfi-Zouaoui N, Hannachi I, Rouaissi M, Hajlaoui MR, Rubio MB, Monte E, Boudabous A, Hermosa MRA (2009) Biodiversity of Trichoderma strains in Tunisia. Can J Microbiol 55:154–162. https://doi.org/10.1139/W08-101

    Article  CAS  PubMed  Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycol 94:146–170

    Article  Google Scholar 

  • Samuels GJ (2006) Trichoderma: Systematics, the sexual state, and ecology. Phytopathol 96:195–206

    Article  CAS  Google Scholar 

  • Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroer HJ, Druzhinina IS (2006) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Samuels GJ, Ismaiel A, Mulaw TB, Szakacs G, Druzhinina IS, Kubicek CP, Jaklitsch WM (2012) The longibrachiatum clade oftrichoderma: a revision with new species. Fungal Divers 55:77–108. https://doi.org/10.1007/s13225-012-0152-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandoval-Denis M, Sutton DA, Cano-Lira JF, Gené J, Fothergill AW, Wiederhold NP, Guarro J (2014) Phylogeny of the clinically relevant species of the emerging fungus trichoderma and their antifungal susceptibilities. J Clin Microbiol 52:2112–2125

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Microb Biotechnol 87:787–799

    Article  CAS  Google Scholar 

  • Seokyoon J, Yeongseon J, Chul-Whan K, Hanbyul L, Joo-Hyun H, Young MH, Young ML, Dong WL, Hyang BL, Jae-Jin K (2017) Five New Records of Soil-Derived Trichoderma in Korea: T. albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum. Mycobiology 45(1):1–8

  • Singh A, Shahid M, Srivastava M, Pandey S, Sharma A, Kumar V (2014) Optimal physical parameters for growth of Trichoderma species at varying ph, temperature and agitation. Virol Mycol 3:127. https://doi.org/10.4172/2161-0517.1000127

    Article  CAS  Google Scholar 

  • Singh D, Pande SK, Kavita, Yadav JK , Kumar S (2018) Bioefficacy of Trichoderma spp. against Bipolaris sorokiniana causing spot blotch disease of wheat and barley. Int J Curr Microbiol App Sci 7:2322–2327. https://doi.org/10.20546/ijcmas.2018.703.272

  • Sundaramoorthy S, Balabaskar P (2013) Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J Appl Biol Biotechnol 1:036–040. https://doi.org/10.7324/JABB.2013.1306

    Article  Google Scholar 

  • Touati I, Ruiz N, Thomas O, Druzhinina IS, Atanasova L, Tabbene O, Elkahoui S, Benzekri R, Bouslama L, Pouchus YF, Limam F (2018) Hyporientalin A, an anti-Candida peptaibol from a marine Trichoderma Orientale World. J Microbiol Biotechnol 34:98. https://doi.org/10.1007/s11274-018-2482-z

  • Vinale F, Sivasithamparam K, Ghisalbertic EL, Marraa R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalbertic EL, Woo SL, Nigro M, Marraa R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma secondary metabolites active on plants and fungal pathogen. Open Mycol J 8:127–139. https://doi.org/10.2174/1874437001408010127

    Article  Google Scholar 

  • Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: A significant fungus for agriculture and environment. Afr J Agric Res 11:1952–1965

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wuczkowski M, Druzhinina I, Gherbawy Y, Klug B, Prillinger H, Kubicek CP (2003) Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol Res 158:125–133

    Article  CAS  PubMed  Google Scholar 

  • Yijayan A, Nair RB, Rajendran R, Francis SM, Nair AS, Thomas J (2015) Evaluation of native Trichoderma spp. against pathogens infecting small cardamom. J Plant Crops 43:35–39

    Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism. Gene Regul Syst Biol 1:227–234

    Google Scholar 

Download references

Acknowledgements

The first author thanks the National Higher School of Agronomy, Algiers - Algeria, the Direction Génerale de la Recherche Scientifique et du Développement Technologique (DGRSDT) – Algeria, and the Department for Innovation in Biological, Agrifood and Forest Systems (DIBAF), Università della Tuscia, Viterbo - Italy for financing and supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saliha Chihat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihat, S., Aleandri, M.P., Vannini, A. et al. Identity and biocontrol efficiency of Trichoderma spp. isolated from different soils and ecosystems in Algeria. J Plant Pathol 103, 493–511 (2021). https://doi.org/10.1007/s42161-021-00761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-021-00761-0

Keywords

Navigation