Skip to main content

Advertisement

Log in

Experimental and theoretical investigation of water-soluble silicon(IV) phthalocyanine and its interaction with bovine serum albumin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) has drawn a great scientific attention to cancer treatment over the last decades. However, the bottleneck for the PDT is to find good photosensitizers (PSs) with greater water solubility, no aggregation, and fast discharge from the body. Therefore, there are still a big scientific desire for the synthesizing new rational PSs for treatment of cancer by PDT technique. In favor of improving the competence of PDT, an axially bis[4-(diphenylamino-1,1′-biphenyl-4-ol)] substituted silicon(IV) phthalocyanine (3) was converted to its water-soluble quaternized derivative (3Q). Their structures were fully characterized by single-crystal X-ray diffraction, elemental analysis, and different spectroscopic methods such as FT-IR, UV–Vis, MALDI-TOF, and 1H-NMR. The photophysical properties such as fluorescence quantum yields and lifetimes, and the photochemical properties such as singlet oxygen generation of both phthalocyanines were investigated. Ground and excited-state calculations were performed to explain the observed electronic absorption spectra. The addition of the 4-diphenylamino-1,1′-biphenyl-4-ol groups on the axially positions of the silicon(IV) phthalocyanine increased the singlet oxygen quantum yield from 0.15 to around 0.20. Especially quaternized compound 3Q showed high singlet oxygen quantum yield of 0.26 in water solution. In addition, a spectroscopic investigation of the binding behavior of the quaternized silicon (IV) phthalocyanine complex to bovine serum albumin (BSA) is also studied in this work, confirming the possible interaction. Further theoretical calculations were carried out to find out the plausible-binding regions of the BSA protein.

Graphic abstract

Axially bis[4-(diphenylamino-1,1′-biphenyl-4-ol)] substituted silicon(IV) phthalocyanine (3) was converted to its quaternized water soluble derivative (3Q). The photophysical properties such as fluorescence quantum yields and lifetimes, and the photochemical properties such as singlet oxygen generation of both phthalocyanines were investigated. In addition, a spectroscopic investigation of the binding behavior of the quaternized silicon (IV) phthalocyanine complex to bovine serum albumin (BSA) is also studied in this work, confirming the possible interaction. Further theoretical calculations were carried out to find out the plausible binding regions of the BSA protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leznoff CC, Lever ABP (1989, 1993, 1996) In Phthalocyanines: properties and applications, vol 1–4. VCH Publishers, New York

  2. Durmuş M, Ahsen V (2010) Water-soluble cationic gallium(III) and indium(III) phthalocyanines for photodynamic therapy. J Inorg Biochem 104:297–309

    Article  PubMed  Google Scholar 

  3. Hu M, Brasseur N, Yıldız SZ, Van Lier JE, Leznoff CC (1998) Hydroxyphthalocyanines as potential photodynamic agents for cancer therapy. J Med Chem 41:1789–1802

    Article  PubMed  CAS  Google Scholar 

  4. Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B Biol 96:1–8

    Article  CAS  Google Scholar 

  5. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  PubMed  CAS  Google Scholar 

  6. Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5:497–508

    Article  PubMed  CAS  Google Scholar 

  7. Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47:3897–3915

    Article  PubMed  CAS  Google Scholar 

  8. Triesscheijn M, Baas P, Schellens JHM, Stewart FA (2006) Photodynamic therapy in oncology. Oncology 11:1034–1044

    CAS  Google Scholar 

  9. Bugaj AM (2011) Targeted photodynamic therapy–a promising strategy of tumor treatment. Photochem Photobiol Sci 10:1097–1109

    Article  PubMed  CAS  Google Scholar 

  10. Li X, Zheng B-D, Peng X-H, Li S-Z, Ying J-W, Zhao Y, Huang J-D, Yoon J (2019) Phthalocyanines as medicinal photosensitizers: developments in the last five years. Coord Chem Rev 379:147–160

    Article  CAS  Google Scholar 

  11. Walter MG, Rudine AB, Wamser CC (2010) Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyr Phthalocyanines 14:759–792

    Article  CAS  Google Scholar 

  12. Shen X-M, Jiang X-J, Huang C-C, Zhang H-H, Huang J-D (2010) Highly photostable silicon(IV) phthalocyanines containing adamantane moieties: synthesis, structure, and properties. Tetrahedron 66:9041–9048

    Article  CAS  Google Scholar 

  13. Shen XM, Zheng BY, Huang XR, Wang L, Huang JD (2013) The first silicon(IV) phthalocyanine-nucleoside conjugates with high photodynamic activity. Dalton Trans 42:10398–10403

    Article  PubMed  CAS  Google Scholar 

  14. Zheng B-Y, Jiang X-J, Lin T, Ke M-R, Huang J-D (2015) Novel silicon(IV) phthalocyanines containing piperidinyl moieties: synthesis and in vitro antifungal photodynamic activities. Dyes Pigments 112:11–316

    Article  Google Scholar 

  15. Zheng Y-W, Chen S-F, Zheng B-Y, Ke M-R, Huang J-D (2014) A silicon(IV) phthalocyanine-folate conjugate as an efficient photosensitizer. Chem Lett 43:1701–1703

    Article  Google Scholar 

  16. Zheng B-Y, Yang X-Q, Zhao Y, Zheng Q-F, Ke M-R, Lin T, Chen R-X, Ho KKK, Kumar N, Huang J-D (2018) Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates. Eur J Med Chem 155:24–33

    Article  PubMed  CAS  Google Scholar 

  17. Li X, Peng X-H, Zheng B-D, Tang J, Zhao Y, Zheng B-Y, Ke M-R, Huang J-D (2018) New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chem Sci 9:2098–2104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. So CW, Tsang PW, Lo PC, Seneviratne CJ, Samaranayake LP, Fong WP (2009) Photodynamic inactivation of Candida albicans by BAM-SiPc. Mycoses 53:215–220

    Article  PubMed  Google Scholar 

  19. Gergova R, Georgieva T, Angelov I, Mantareva V, Valkanov S, Mitov I, Dimitrov S (2012) Photodynamic therapy with water-soluble phthalocyanines against bacterial biofilms in teeth root canals Proc SPIE-Int Soc. Opt Eng 86:842744–842755

    Google Scholar 

  20. Zheng BY, Lin T, Yang HH, Huang JD (2013) Photodynamic inactivation of Candida albicans sensitized by a series of novel axially di-substituted silicon(IV) phthalocyanines. Dyes Pigments 96:547–553

    Article  CAS  Google Scholar 

  21. Mantareva V, Angelov I, Kussovski V, Dimitrov R, Lapok L, Wöhrle D (2011) Photodynamic efficacy of water-soluble Si(IV) and Ge(IV) phthalocyanines toward Candida albicans planktonic and biofilm cultures. Eur J Med Chem 46:4430–4440

    Article  PubMed  CAS  Google Scholar 

  22. Lowery MK, Starshak AJ, Esposito JN, Krueger PC, Kenney ME (1965) Dichloro(phthalocyanino)silicon. Inorg Chem 4:128

    Article  CAS  Google Scholar 

  23. Atmaca GY, Dizman C, Eren T, Erdogmus A (2015) Novel axially carborane-cage substituted silicon phthalocyanine photosensitizer; synthesis, characterization and photophysicochemical properties. Spectrochim Acta Mol Biomol Spectrosc 137:244–249

    Article  CAS  Google Scholar 

  24. Enkelkamp H, Nolte RJM (2000) Molecular materials based on crown ether functionalized phthalocyanines. J Porphyr Phthalocyanines 4:454–459

    Article  Google Scholar 

  25. Dominguez DD, Snow AW, Shirk JS, Pong RS (2001) Polyethyleneoxide-capped phthalocyanines: limiting phthalocyanine aggregation to dimer formation. J Porphyr Phthalocyanines 5:582–592

    Article  CAS  Google Scholar 

  26. Gülmez AD, Göksel M, Durmuş M (2017) Silicon(IV) phthalocyanine-biotin conjugates: synthesis, photophysicochemical properties and in vitro biological activity for photodynamic therapy. J Porphyr Phthalocyanines 21:547–554

    Article  Google Scholar 

  27. Ogunsipe A, Chen J-Y, Nyokong T (2004) Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives—effects of substituents and solvents. New J Chem 28:822–827

    Article  CAS  Google Scholar 

  28. Ömeroğlu İ, Kaya EN, Göksel M, Kussovski V, Mantareva V, Durmuş M (2017) Axially substituted silicon(IV) phthalocyanine and its quaternized derivative as photosensitizers toward tumor cells and bacterial pathogens. Bioorg Med Chem 25:5415–5422

    Article  PubMed  Google Scholar 

  29. Göksel M, Biyiklioglu Z, Durmuş M (2017) The water soluble axially di-substituted silicon phthalocyanines: photophysicochemical properties and in vitro studies. J Biol Inorg Chem 22:953–967

    Article  PubMed  Google Scholar 

  30. Al-Raqa SY, Khezami K, Kaya EN, Durmuş M (2021) A novel water soluble axially substituted silicon (IV) phthalocyanine bearing quaternized 4-(4-pyridinyl)phenol groups: synthesis, characterization, photophysicochemical properties and BSA/DNA binding behavior. Polyhedron 194:114937

    Article  CAS  Google Scholar 

  31. Atmaca GY (2021) Measurement of singlet oxygen generation of 9-(hydroxymethyl)anthracene substituted silicon phthalocyanine by sono-photochemical and photochemical studies. J Mol Struct 1226:129320

    Article  CAS  Google Scholar 

  32. Atmaca GY (2021) Investigation of singlet oxygen efficiency of di-axially substituted silicon phthalocyanine with sono-photochemical and photochemical studies. Polyhedron 193:114894

    Article  Google Scholar 

  33. Durmuş M, Nyokong T (2008) Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochim Acta Part A 69:1170–1177

    Article  Google Scholar 

  34. Durmuş M, Ahsen V, Nyokong T (2012) Photochemical and photophysical characterization: photosensitizers in medicine, environment, and security. Springer, Dordrecht Heidelberg, London, New York ((ISBN 978-90-481-3872-2))

    Google Scholar 

  35. Gürol I, Durmuş M, Ahsen V, Nyokong T (2007) Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Trans 34:82–91

    Google Scholar 

  36. Peng Y, Huang F, Wen J, Huang B, Ma X, Wang Q (2008) A spectroscopic study of the interaction of octacarboxylic metal phthalocyanine with bovine serum albumin. J Coord Chem 61:1503–1512

    Article  CAS  Google Scholar 

  37. Krishnamoorthy P, Sathyadevi P, Cowley AH, Butorac RR, Dharmaraj N (2011) Evaluation of DNA binding, DNA cleavage, protein binding and in vitro cytotoxic activities of bivalent transition metal hydrazone complexes. Eur J Med Chem 46:3376–3387

    Article  PubMed  CAS  Google Scholar 

  38. Vignesh G, Arunachalam S, Vignesh S, James RA (2012) BSA binding and antimicrobial studies of branched polyethyleneimine–copper(II)bipyridine/phenanthroline complexes. Spectrochim Acta A 96:108–116

    Article  CAS  Google Scholar 

  39. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry. M Decker, New York

    Google Scholar 

  40. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  41. Nunes SMT, Sguilla FS, Tedesco AC (2004) Photophysical studies of zinc phthalocyanine and chloroaluminum phthalocyanine incorporated into liposomes in the presence of additives. Braz J Med Biol Res 37:273–284

    Article  PubMed  CAS  Google Scholar 

  42. Çolak S, Durmuş M, Yıldız SZ (2016) Tetrakis{2-[N-((3-morpholino)propyl)carbamate]oxyethyl} zinc(II) phthalocyanine and its water soluble derivatives: synthesis, photophysical, photochemical and protein binding properties. J Photochem Photobiol A 325:125–134

    Article  Google Scholar 

  43. Ömeroğlu İ, Göksel M, Kussovski V, Mantareva V, Durmuş M (2019) Novel water-soluble silicon(IV) phthalocyanine with powerful photodynamic efficacy against tumors and pathogenic bacteria. Macroheterocycles 12:255–263

    Article  Google Scholar 

  44. Huang J-D, Lo P-C, Chen Y-M, Lai JC, Fong W-P, Ng DKP (2006) Preparation and in vitro photodynamic activity of novel silicon(IV) phthalocyanines conjugated to serum albumins. J Inorg Biochem 100:946–951

    Article  PubMed  CAS  Google Scholar 

  45. Bujacz A, Zielinski K, Sekula B (2014) Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen. Proteins 82:2199–2208

    Article  PubMed  CAS  Google Scholar 

  46. Castagna R, Donini S, Colnago P, Serafini A, Parisini E, Bertarelli C (2019) Biohybrid electrospun membrane for the filtration of ketoprofen drug from water. ACS Omega 4:13270–13278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kenny PW (2019) The nature of ligand efficiency. J Cheminformatics 11:2–18

    Article  Google Scholar 

  48. Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu Y-K (2005) Protein database searches using compositionally adjusted substitution matrices. FEBS J 272:5101–5109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, Chruszcz M, Minor W (2012) Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol 52:174–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Li X, Jeong K, Lee Y, Guo T, Lee D, Park J, Kwon N, Na J-H, Hong SK, Cha S-S, Huang J-D, Choi S, Kim S, Yoon J (2019) Water-soluble phthalocyanines selectively bind to albumin dimers: a green approach toward enhancing tumor-targeted photodynamic therapy. Theranostics 9(22):6412–6423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Çakir V, Göksel M, Durmuş M, Biyiklioglu Z (2016) Synthesis and photophysicochemical properties of novel water soluble phthalocyanines. Dyes Pigments 125:414–425

    Article  Google Scholar 

  52. Maree S, Nyokong T (2001) Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes. J Porphyr Phthalocyanines 5:782–792

    Article  CAS  Google Scholar 

  53. Sahin B, Topal SZ, Atilla D (2017) Synthesis, photophysical and photochemical properties of a set of silicon phthalocyanines bearing anti-inflammatory groups. J Fluoresc 27:407–416

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Khaoula Khezami would like to thank TUBITAK for the fellowship 2216, RESEARCH FELLOWSHIP PROGRAMME FOR INTERNATIONAL RESEARCHERS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Durmuş.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2107 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Raqa, S.Y., Khezami, K., Kaya, E.N. et al. Experimental and theoretical investigation of water-soluble silicon(IV) phthalocyanine and its interaction with bovine serum albumin. J Biol Inorg Chem 26, 235–247 (2021). https://doi.org/10.1007/s00775-021-01848-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01848-w

Keywords

Navigation