Skip to main content

Advertisement

Log in

Copper toxicity of inflection point in human intestinal cell line Caco-2 dissected: influence of temporal expression patterns

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We previously described a non-monotonic dose response curve at low copper concentrations where 3.125 μM CuSO4 (the early inflection point) was more toxic than 25 μM CuSO4 in Caco-2 cells. We employed global proteomics to investigate this observation. The altered expression levels of a small number of proteins displaying a temporal response may provide the best indication of the underlying mechanism; more well-known copper response proteins including the metal binding metallothioneins (MT1X, MT1F, MT2A) and antioxidant response proteins including Heme oxygenase were upregulated to a similar level in both copper concentrations and so are less likely to underpin this phenomenon.

The temporal response proteins include Granulins, AN1-type zinc finger protein 2A (ZFAND2A), and the heat shock proteins (HSPA6 and HSPA1B). Granulins were decreased after 4 h only in 25 μM CuSO4 but from 24 h, were decreased in both copper concentrations to a similar level. Induction of ZFAND2A and increases in HSPA6 and HSPA1B were observed at 24 h only in 25 μM CuSO4 but were present at 48 h in both copper conditions. The early expression of ZFAND2A, HSPs, and higher levels of α-crystallin B (CRYAB) correlated with lower levels of misfolded proteins in 25 μM CuSO4 compared to 3.125 μM CuSO4 at 48 h. These results suggest that 3.125 μM CuSO4 at early time points was unable to activate the plethora of stress responses invoked by the higher copper concentration, paradoxically exposing the Caco-2 cells to higher levels of misfolded proteins and greater proteotoxic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Allocca S, Ciano M, Ciardulli MC, D’Ambrosio C, Scaloni A, Sarnataro D, Caporaso MG, D’Agostino M, Bonatti S (2018) An αB-crystallin peptide rescues compartmentalization and trafficking response to Cu overload of ATP7B-H1069Q, the most frequent cause of Wilson disease in the Caucasian population. Int J Mol Sci. 19(7):1892

    Article  Google Scholar 

  • Araya M, Pixarro F, Olivares M, Arredondo M, Gonzálex M, Méndez M (2006) Understanding copper homeostasis in humans and copper effects on health. Biol Res 39:183–187

    Article  CAS  Google Scholar 

  • Baker M, Mackenzie I, Pickering-Brown S, Gass J, Rademakers R, Lindholm C, SnowdenJ AJ, Sadovnick AD, Rollinson S, Cannon A, Dwosh E, Neary D, Melquist S, Richardson A, Dickson D, Berger Z, Eriksen J, Robinson T, Zehr C, Dickey CA, Crook R, McGowan E, Mann D, Boeve B, Feldman H, Hutton M (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  CAS  Google Scholar 

  • Beele S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, Saftig P, Van Damme P (2017) Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Human Mol Gen 26(15):2850–2863

    Article  Google Scholar 

  • Bremner I (1998) Manifestations of copper excess, The American Journal of Clinical Nutrition. Volume 67(5):1069S–1073S

    CAS  Google Scholar 

  • Calabrese EJ (2013) Hormetic mechanisms. Crit Rev Toxicol 43(7):580–606

    Article  CAS  Google Scholar 

  • Coleman O, Henry M, Clynes M, Meleady P (2017) Filter-aided sample preparation (FASP) for improved proteome analysis of recombinant chinese hamster ovary cells. In: Meleady P. (eds) Heterologous protein production in CHO cells. Methods in Molecular Biology, vol 1603. Humana Press, New York, NY

  • Coleman O, Henry M, O’Neill F, Roche S, Swan N, Boyle L, Murphy J, Meiller J, Conlon NT, Geoghegan J, Conlon KC, Lynch V, Straubinger NL, Straubinger RM, McVey G, Moriarty M, Meleady P, Clynes M (2018) A comparative quantitative LC-MS/MS profiling analysis of human pancreatic adenocarcinoma, adjacent-normal tissue, and patient-derived tumour xenografts. Proteomes 6(4):45

    Article  CAS  Google Scholar 

  • Findlay VJ, Townsend DM, Morris TE, Fraser JP, He L, Tew KD (2006) A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res 66(13):6800–6806

    Article  CAS  Google Scholar 

  • Freedman JH, Weiner RJ, Peisach J (1986) Resistance to copper toxicity of cultured hepatoma cells. Characterization of resistant cell lines. J Biol Chem. 261(25):11840–11848

    Article  CAS  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. JBC 143(7):1883–1898

    CAS  Google Scholar 

  • Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K (2018) Copper signalling: causes and consequences. Cell Commun Signal 16(1):80

    Article  Google Scholar 

  • Karginova O, Weekley CM, Raoul A, Alsayed A, Wu T, Lee SSY, He C, Olopade OI (2019) Inhibition of copper transport induces apoptosis in triple-negative breast cancer cells and suppresses tumor angiogenesis. Mol Cancer Ther. 18(5):873–885

    Article  CAS  Google Scholar 

  • Klein ZA, Takahashi H, Ma M, Stagi M, Zhou M, Lam TT, Strittmatter SM (2017) Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron. 95(2):281–296

    Article  CAS  Google Scholar 

  • Lee SH, Lee S, Du J, Jain K, Ding M, Kadado AJ, Atteya G, Jagi Z, Tyagi T, Kim W, Herzog RI, Patel A, Ionescu CN, Martin KA, Hwa J (2019) Mitochondrial MsrB2 serves as a switch and transducer for mitophagy. EMBO Mol Med. 11(8):e10409

    Article  Google Scholar 

  • Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. The American Journal of Clinical Nutrition 63(5):797S–811S

    CAS  PubMed  Google Scholar 

  • McConkey DJ (2017) The integrated stress response and proteotoxicity in cancer therapy. Biochem Biophys Res Commun. 482(3):450–453

    Article  CAS  Google Scholar 

  • McElwee MK, Song MO, Freedman JH (2009) Copper activation of NF-kappaB signaling in HepG2 cells. J Mol Biol. 393(5):1013–1021.

  • Mizzen CA, Cartel NJ, Yu WH, Fraser PE, McLachlan DR (1996) Sensitive detection of metallothioneins-1, -2 and -3 in tissue homogenates by immunoblotting: a method for enhanced membrane transfer and retention. J Biochem Biophys Met 32(2):77–83

    Article  CAS  Google Scholar 

  • Murphy S, Zweyer M, Raucamp M, Henry M, Meleady P, Swandulla D, Ohlendieck K (2019) Proteomic profiling of the mouse diaphragm and refined mass spectrometric analysis of the dystrophic phenotype. J Muscle Res Cell Motil. 40(1):9–28

    Article  CAS  Google Scholar 

  • Nevitt T, Ohrvik H, Thiele DJ (2012) Charting the travels of copper in eukaryotes from yeast to mammals. BBA 1823(9):1580–1593

    CAS  PubMed  Google Scholar 

  • Nivon M, Fort L, Muller P, Richet E, Simon S, Guey B, Fournier M, Arrigo AP, Hetz C, Atkin JD, Kretz-Remy C (2016) NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol Biol Cell. 27(11):1712–1727

    Article  CAS  Google Scholar 

  • O’Doherty C, Keenan J, Horgan K, Murphy R, O’Sullivan F, Clynes M (2019) Copper-induced non-monotonic dose response in Caco-2 cells. In Vitro Cellular & Developmental Biology - Animal. https://doi.org/10.1007/s11626-019-00333-8

  • Oliveros JC (2007-2015). Venny. an interactive tool for comparing lists with Venn’s diagram. Available from: http://bioinfogp.cnb.csic.es/ tools/venny/index.html

  • Paushter DH, Du H, Feng T, Hu F (2018) The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol. 36(1):1–17

    Article  Google Scholar 

  • Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, Paladino S, Baldantoni D, van Ijzendoorn SC, Chan J, Cheng CJ, Amoresano A, Pane F, Pucci P, Tarallo A, Parenti G, Brunetti-Pierri N, Settembre C, Ballabio A, Polishchuk RS (2014) Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell. 29(6):686–700

    Article  CAS  Google Scholar 

  • Rossi A, Riccio A, Coccia M, Trotta E, La Frazia S, Santoro MG (2014) The proteasome inhibitor bortezomib is a potent inducer of zinc finger AN1-type domain 2a gene expression: role of heat shock factor 1 (HSF1)-heat shock factor 2 (HSF2) heterocomplexes. J Biol Chem. 289(18):12705–12715

    Article  CAS  Google Scholar 

  • Rossi A, Trotta E, Brandi R, Arisi I, Coccia M, Santoro MG (2010) AIRAP, a new human heat shock gene regulated by heat shock factor 1. J Biol Chem. 285(18):13607–13615

    Article  CAS  Google Scholar 

  • Schulz H (1888) Ueber Hefegifte. Pflügers Arch 42(1):517–541

    Article  Google Scholar 

  • Sok J, Calfon M, Lu J, Lichtlen P, Clark SG, Ron D (2001) Arsenite-inducible RNA-associated protein (AIRAP) protects cells from arsenite toxicity. Cell Stress Chaperones 6(1):6–15

    Article  CAS  Google Scholar 

  • Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach TG, Yamanouchi K, Hasegawa M, Nishihara M (2017) Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Human Molecular Genetics. 26(5):969–988

    CAS  PubMed  Google Scholar 

  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455

    Article  CAS  Google Scholar 

  • Wang N, Wang G, Hao J, Ma J, Wang Y, Jiang X, Jiang H (2012) Curcumin ameliorates hydrogen peroxide-induced epithelial barrier disruption by upregulating heme oxygenase-1 expression in human intestinal epithelial cells. Digestive Diseases and Sciences 57(7):1792–1801

    Article  CAS  Google Scholar 

  • Worsøe J, Fynne L, Gregersen T, Schlageter V, Christensen LA, Dahlerup JF, Rijkhoff NJM, Laurberg S, Krogh K (2011) Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system. BMC Gastroenterology 11(1):145

    Article  Google Scholar 

  • Yang WC, Tsai WC, Lin PM, Yang MY, Lin YC, Chang CS, Yu WH, Lin SF (2013) Human BDH2, an anti-apoptosis factor, is a novel poor prognostic factor for de novo cytogenetically normal acute myeloid leukemia. J Biomed Sci. 20(1):58.

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Shouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1-2):317–331

    Article  CAS  Google Scholar 

  • Zhou X, Sun L, Brady OA, Murphy KA, Hu F (2017) Elevated TMEM106B levels exaggerate lipofuscin accumulation and lysosomal dysfunction in aged mice with progranulin deficiency. Acta Neuropathol Commun. 5(1):9

    Article  Google Scholar 

  • Yang-Yen HF (2006) Mcl-1: a highly regulated cell death and survival controller. J. Biomed. Sci. 13(2):201–204

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by a joint Enterprise Ireland Innovative Partnership programme (IP/2015/0375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Keenan.

Additional information

Editor: Tetsuji Okamoto

JK and PM are joint first authors.

RM and FOS are joint last authors.

Supplementary Information

ESM 1

(PPTX 72 kb)

ESM 2

(XLSX 129 kb)

ESM 3

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keenan, J., Meleady, P., O’Doherty, C. et al. Copper toxicity of inflection point in human intestinal cell line Caco-2 dissected: influence of temporal expression patterns. In Vitro Cell.Dev.Biol.-Animal 57, 359–371 (2021). https://doi.org/10.1007/s11626-020-00540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00540-8

Keywords

Navigation