Skip to main content
Log in

Diamond in the Oceanic Lithosphere. Volcanic Diamonds and Diamonds in Ophiolites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Diamonds were lately identified in chromitites from ophiolites and in volcanic rocks. Although the tectonic settings of diamonds found in these rocks are different, the diamonds are identical in small size, cuboctahedral habit, sets of minor admixture elements, and isotopic characteristics. A model is suggested for their formation during various stages of a single evolutionary cycle of the oceanic lithosphere, in relation to the geochemical and dynamic features of an ascending flow of mantle material, which produces the oceanic lithosphere at mid-oceanic ridges. In contrast to the continental lithosphere, in which mantle diamonds are usually related to kimberlite and lamproite magmatism in the presence of abundant CO2-rich fluid, diamonds in the oceanic lithosphere crystallize in environments poor in fluid and containing carbon mostly in its reduced forms. In the asthenospheric part of the ascending flow, carbon may occur in the form of nanometer-sized diamonds. In the upper parts of the oceanic lithosphere, the diamonds are overgrown and become microdiamonds (0.2–0.7 mm) within chromitites. After basaltic magma is derived from pyrolite, the residual harzburgites with lenses of diamondiferous chromitites are brought (at spreading) to the convergent boundaries of oceanic lithospheric plates, where the following two processes can proceed. If the oceanic lithosphere collides with a continental plate, the obducted material of the oceanic lithosphere is transferred to the surface of the continental margin and forms ophiolite massifs hosting diamond-bearing chromitites. If the oceanic lithosphere is subducted, the residual peridotite already enriched in volatiles is remelted. The arc magmas thus derived host diamond microcrystals, which have been formed in the chromitites and are sometimes found in volcanic lavas and ashes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. In our model, we assume the concept of overall mantle convection, which finds support not only in the long-known data on seismic velocities in the mantle (e.g., Grant, 1994; Yoshida, 2014) but also in 87Sr/86Sr, δ18O, and δ13C data on low-crustal minerals.

REFERENCES

  1. L. P. Anikin, I. F. Delemen’, V.A. Rashidov, and V. M. Chubarov, “Accessory minerals in the eruption products of Alaid volcanoes, Kuril island arc,” Volcanism and Related Processes: Proceedings of 21rst Regional Conference, Petropavlovsk–Kamchatskii, Russia, 2018 (IViS, DVO RAS, Petropavlovsk–Kamchatskii, 2018), pp. 157–160 [in Russian].

  2. S. V. Aplonov, Geodynamics (St. Petersburg. University, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  3. S. Arai and N. Abe, “Reaction of orthopyroxene in peridotite xenoliths with alkali basalt melt and its implication for genesis of alpine–type chromitite,” Am. Mineral. 80, 1041–1047 (1995).

    Article  Google Scholar 

  4. S. Arai and K. Matsukage, “Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparison between abyssal and alpine–type podiform chromitites. Lithos. 43(1), 1–14 (1998).

    Article  Google Scholar 

  5. P. Badziag, W. S. Verwoerd, W. P. Ellis, and N. R. Greiner, “Nanometre–sized diamonds are more stable than graphite,” Nature 343, 244–245 (1982).

    Article  Google Scholar 

  6. V. A. Baikov, L. P. Anikin, and R. L. Dunin–Barkovskii, “Find of carbonado in volcanic rocks of Kamchatka,” Dokl Akad. Nauk 343 (3), 72–74 (1995).

    Google Scholar 

  7. E. F. Chaikovskii, and G. Kh. Rozenberg, “Phase diagram of carbon and possibility of low–temperature diamond formation,” Dokl. Akad. Nauk SSSR 279, 1372–1375 (1984).

    Google Scholar 

  8. Y. Chen, J. Yang, Z. Xu, Y. Tian, and S. Lai, “Diamonds and other unusual minerals from peridotites of the Myitkyina ophiolite, Myanmar,” J. Asian Earth Sci. 164, 179–193 (2018).

    Article  Google Scholar 

  9. Al. Chepurov, V. Sonin, J.-M. Dereppe, E. Zhimulev, and An. Chepurov, “How do diamonds grow in metal melt together with silicate minerals? An experimental study of diamond morphology,” Eur. J. Mineral. 32, 41–55 (2020).

    Article  Google Scholar 

  10. S. Das, A. R. Basu, and B. K. Mukherjee, “In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone,” Geology. 45 (8), 755–758 (2017).

    Google Scholar 

  11. R. Dasgupta and M. M. Hirschmann, “The deep carbon cycle and melting in Earth’s interior,” Earth Planet. Sci. Lett. 198 (1–2), 1–13 (2010).

    Article  Google Scholar 

  12. B. V. Deryagin and D. V. Fedoseev, “Epitaxial synthesis of diamond in the metastable field,” Usp. Khimii 39 (9), 1661–1671 (1970).

    Google Scholar 

  13. Y. Dilek and H. Furnes, “Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere,” Geol. Soc. Amer. Bull. 123 (3–4), 387–411 (2011).

    Article  Google Scholar 

  14. Y. Dilek and H. Furnes, “Ophiolites and their origins,” Elements 10, 93–100 (2014).

    Article  Google Scholar 

  15. B. Dischler and C. Wild, Low–Pressure Synthetic Diamond (Springer–Verlag, Berlin–Heidelberg, 1998).

    Book  Google Scholar 

  16. A. Yu. Dnestrovskii, S. A. Voropaev, and E. A. Ponomareva, “Modeling of diamond formation conditions during cavitation in benzene,” Dokl. Physics 56 (2), 78–81 (2011).

    Article  Google Scholar 

  17. L. F. Dobrzhinetskaya, R. Wirth, J. Yang, I. D. Hutcheon, P. K. Weber, and H. W. Green, II, “High–pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite,” PNAS. 106 (46), 19233–19238 (2009).

    Article  Google Scholar 

  18. Q. S. Fang and W. J. Bai, “The discovery of Alpine–type diamond–bearing ultrabasic intrusions in Tibet,” Geol. Rev. 5, 455–457 (1981) (in Chinese).

    Google Scholar 

  19. D. V. Fedoseev, “Influence of particle size on the graphite–diamond equilibrium,” Kolloid Zh. 40 (2), 402–403 (1976).

    Google Scholar 

  20. E. M. Galimov, “Evolution of the Earth’s carbon,” Geokhimiya, No. 5, 530–536 (1967).

    Google Scholar 

  21. E. M. Galimov, Geochemistry of Stable Carbon Isotopes (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  22. E. M. Galimov, “On possibility of natural diamond synthesis under conditions of cavitation, occurring in a fast moving magmatic melt,” Nature 243, 389–391 (1973).

    Article  Google Scholar 

  23. E. M. Galimov, A. M. Kudin, V. N. Skorobogatski, V. G. Plotnichenko, O. L. Bondarev, B. G. Zarubin, V. V. Strazdovski, A. S. Aronin, A. V. Fisenko, I. V. Bykov, and A. Yu. Barinov, “Experimental corroboration of the synthesis of diamond in the cavitation process,” Dokl. Phys. 49 (3), 150–153 (2004).

    Article  Google Scholar 

  24. E. M. Galimov, G. A. Karpov, V. S. Sevast’yanov, S. N. Shilobreeva, and A. P. Maksimov, “Diamonds in the products of the 2012–2013. Tolbachik Eruption (Kamchatka) and mechanism of their formation,” Geochem. Int. 54 (10), 829–833 (2016a).

    Article  Google Scholar 

  25. E. M. Galimov, V. S. Sevastyanov, G. A. Karpov, S. N. Shilobreeva and A. P. Maksimov, “Microcrystalline diamonds in the oceanic lithosphere and their nature, Dokl. Earth Sci. 469 (1), 670–673 (2016b).

    Article  Google Scholar 

  26. E. M. Galimov, F. V. Kaminsky, S. N. Shilobreeva, V. S. Sevastyanov, R. Wirth, A. Schreiber, V. V. Saraykin, G. A. Karpov, and L. P. Anikin, “Enigmatic diamonds from the Tolbachik volcano, Kamchatka,” Am. Mineral. 105 (4), 495–509 (2020).

    Article  Google Scholar 

  27. S. P. Grand, “Mantle shear structure beneath the Americas and surrounding oceans,” J. Geophys. Res. 99, 11591–11621 (1994).

    Article  Google Scholar 

  28. D. Howell, W. L. Griffin, J. Yang, S. Gain, R. A. Stern, J.‑X. Huang, D. E. Jacob, X. Xu, A. J. Stokes, S. Y. O’Reilly, and N. J. Pearson, “Diamonds in ophiolites: contamination or a new diamond growth environment?,” Earth Planet. Sci. Lett. 430, 284–295 (2015).

    Article  Google Scholar 

  29. Z. Huang, J. Yang, P. T. Robinson, Y. Zhu, F. Xiong, Z. Liu, Z. Zhang, and W. Xu, “The discovery of diamonds in chromitites of the Hegenshan ophiolite, Inner Mongolia,” Acta Geol. Sin. 89 (2), 341–350 (2015).

    Article  Google Scholar 

  30. F. V. Kaminsky “Water in the Earth’s lower mantle,” Geochem. Int. 56 (12), 1117–1134 (2018).

    Article  Google Scholar 

  31. F. Kaminsky and R. Wirth, “Nitrides and carbonitrides from the lower mantle and their importance in search for Earth’s ‘lost’ nitrogen,” Am. Mineral. 102 (8), 1667–1676 (2017).

    Article  Google Scholar 

  32. F. V. Kaminsky M. G. Patoka, and V. S. Sheimovich, “On the geological–tectonic position of diamondiferous basalts of Kamchatka,” Dokl. Akad. Nauk SSSR 246 (3), 679–682 (1979).

    Google Scholar 

  33. F. V. Kaminsky, R. Wirth, L. P. Anikin, L. Morales, and A. Schreiber, “Carbonado–like diamond from the Avacha active volcano in Kamchatka, Russia,” Lithos 265, 222–236 (2016).

    Article  Google Scholar 

  34. F. V. Kaminsky, R. Wirth, L. P. Anikin, and A. Schreiber, “Kamchatite” diamond aggregate from northern Kamchatka, Russia: New find of diamond formed by gas phase condensation or chemical vapor deposition,” Am. Mineral. 104 (1), 140–149 (2019).

    Article  Google Scholar 

  35. G. A. Karpov, V. I. Silaev, L. P. Anikin, V. I. Rakin, E. A. Vasil’ev, S. K. Filatov, V. A. Petrovskii, and G. B. Flerov, “Diamonds and accessory minerals in products of the 2012–2013 Tolbachik Fissure Eruption,” J. Volcanol. Seismol. 8 (6), 323–339 (2014).

    Article  Google Scholar 

  36. O. N. Kiseleva, S. M. Zhmodik, V. V. Damdinov, L. V. Agafonov, and D. K. Belyanin, “Composition and evolution of PGE mineralization in chromite ores from the Il’chir ophiolite complex (Ospa–Kitoi and Khara–Nur areas, East Sayan),” Russ. Geol. Geophys. 55 (2), 259–272 (2014).

    Article  Google Scholar 

  37. F. Sh. Kutyev, and G. V. Kutyeva, “Diamonds in basaltic rocks of Kamchatka,” Dokl. Akad. Nauk SSSR 221 (1), 183–186(1975).

    Google Scholar 

  38. D. Lian, J. Yang, Y. Dilek, W. Wu, Z. Zhang, F. Xiong, F. Liu, and W. Zho, “Deep mantle origin and ultra–reducing conditions in podiform chromitite: Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti–Karsanti ophiolite, southern Turkey,” Am. Mineral. 102, 1101–1113 (2017).

    Google Scholar 

  39. D. Lian, J. Yang, M. Wiedenbeck, Y. Dilek, A. Rocholl, and W. Wu, “Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey,” Contrib. Mineral. Petrol. 173, 72 (2018).

    Article  Google Scholar 

  40. C. H. P. Lupis, Chemical Thermodynamics of Materials (North–Holland, New York, 1983).

    Google Scholar 

  41. E. A. Mathez, R. A. Fogel, I. D. Hutcheon, and V. K. Marshintsev, “Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia,” Geochim. Cosmochim. Acta. 59 (4), 781–791 (1995).

    Article  Google Scholar 

  42. K. Matsukage and S. Arai, “Jadeite, albite and nepheline as inclusions in spinel of chromitite from Hess deep, equatorial Pacific: their genesis and implications for serpentinite diapir formation,” Contrib. Mineral. Petrol. 131, 111–122 (1998).

    Article  Google Scholar 

  43. B. D. Payot, S. Arai, H. J. B. Dick, N. Abe, and Y. Ichiyama, “Podiform chromitite formation in a low–Cr/high–Al system: An example from the Southwest Indian Ridge (SWIR),” Mineral. Petrol. 108, 533–549 (2014).

    Article  Google Scholar 

  44. N. P. Pokhilenko, T. G. Shumilova, V. P. Afanasiev, and K. D. Litasov, “Diamonds in the Kamchatka Peninsula (Tolbachik and Avacha volcanoes): natural origin or contamination?” Russ. Geol. Geophys. 60 (5), 463–472 (2019).

    Article  Google Scholar 

  45. J. Ridley, Ore Deposit Geology (Cambridge University Press, 2013).

    Book  Google Scholar 

  46. P. Robinson, W.-J. Bai, J. Malpas, J.-S. Yang, M.-F. Zhou, Q.-S. Fang, X.-F. Hu, S. Cameron, and H. Staudigel, “Ultra–high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications,” In: Aspects of the Tectonic Evolution of China, Ed. by J. Malpas, J. C. Fletcher, J. C. Aitchison and J. All, Geol. Soc. London, Spec. Publ. 226, 247–272 (2004).

  47. P. R. Robinson, B. Trumbull, A. Schmitt, J. S. Yang, J. W. Li, M. F. Zhou, J. Erzinger, S. Dare, and F. Xiong, “The origin and significance of crustal minerals in ophiolitic chromitites and peridotites,” Gondwana Res. 27 (2), 486–506 (2015).

    Article  Google Scholar 

  48. D. E. Saveliev and V. B. Fedoseev, “Solid–phase redistribution of mineral particles in ascending mantle flow as mechanism of chromite accumulation in the ophiolite ultramafic rocks: evidence from the Kraka ophiolite, South Urals,” Georesursy 21 (1), 31–46 (2019).

    Article  Google Scholar 

  49. V. A. Seliverstov and F.V. Kaminsky, “High–pressure mineral associations in alkaline ultramafic volcanics of Kamchatka Peninsula, Russia,” International Volcanological Congress, Ankara. Volume of Abstracts, Ankara, Turkey, 1994 (Ankara, 1994), pp. 160–163.

  50. R. Wirth and A. Rocholl, “Nano–crystalline diamond from the Earth mantle underneath Hawaii,” Earth Planet. Sci. Lett. 211 (3–4), 357–369 (2003).

    Article  Google Scholar 

  51. W. Wu, J. Yang, R. Wirth, J. Zheng, D. Lian, T. Qiu, and I. Milushi, “Carbon and nitrogen isotopes and mineral inclusions in diamonds from chromitites of the Mirdita ophiolite (Albania) demonstrate recycling of oceanic crust into the mantle,” Am. Mineral. 104, 485–500 (2019).

    Article  Google Scholar 

  52. F. Xiong, J. Yang, P. T. Robinson, Y. Dilek, I. Milushi, X. Xu, W. Zhou, Z. Zhang, and H. Rong, “Diamonds discovered from high-Cr podiform chromitites from Bulqiza, eastern Mirdita ophiolite, Albania,” Acta Geol. Sin. 91 (2), 455–468 (2017).

    Article  Google Scholar 

  53. X. Xu, J. Yang, P. T. Robinson, F. Xiong, D. Ba, and G. Guo, “Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet,” Gondwana Res. 27, 686–700 (2015).

    Article  Google Scholar 

  54. X. Xu, P. Cartigny, J. Yang, Y. Dilek, F. Xiong, and G. Guo, “Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite–hosted diamonds from the Luobusa ophiolite, Tibet, and Ray–Iz ophiolite, Polar Urals,” Lithosphere 10 (1), 156–169 (2017).

    Article  Google Scholar 

  55. J. Yang, L. Dobrzhinetskaya, W. Bai, Q. Fang, P. T. Robinson, J. Zhang, and H. W. Green, “Diamond–and coesite–bearing chromitites from the Luobusa ophiolite, Tibet,” Geology 35 (10), 875–878 (2007).

    Article  Google Scholar 

  56. J. Yang, P. T. Robinson, and Y. Dilek, “Diamonds in ophiolites,” Elements 10 (2), 127–130 (2014).

    Article  Google Scholar 

  57. J. Yang, F. Meng, X. Xu, P. T. Robinson, Y. Dilek, A. B. Makeyev, R. Wirth, M. Wiedenbeck, and J. Cliff, “Diamonds, native elements and metal alloys from chromitites of the Ray–Iz ophiolite of the Polar Urals,” Gondwana Res. 27, 459–485 (2015).

    Article  Google Scholar 

  58. J. Yang, P. T. Robinson, X. Xu, F. Xiong, and D. Lian, “Diamond in oceanic peridotites and chromitites: Evidence for deep recycled mantle in the global ophiolite record,” International Symposium on Deep Earth Exploration and Practices. Beijing, China, 2018 (Beijing, 2018), p. 3.

  59. J. Yang, S. K. Simakov, K. Moe, V. Scribano, D. Lian, and W. Wu, “Comment on “Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials” by Litasov et al., (2019),” Gondwana Res. 79, 301–303 (2020).

    Article  Google Scholar 

  60. M. Yoshida, “A new conceptual model for whole mantle convection and the origin of hotspot plumes,” J. Geodyn. 78, 32–41 (2014).

    Article  Google Scholar 

  61. M. F. Zhou, P. T. Robinson, J. Malpas, and Z. Li, “Podiform chromitites in the Luobusa Ophiolite (Southern Tibet): implications for melt–rock interaction and chromite segregation in the upper mantle,” J. Petrol. 37, 3–21 (1996).

    Article  Google Scholar 

  62. M. Zhou, P. T. Robinson, J. Malpas, J. Aitchison, M. Sun, W. Bai, X. Hu, J. Yang, “Melt/mantle interaction and melt evolution in the Sartohay high–Al chromite deposits of the Dalabute ophiolite (NW China),” J. Asian Earth Sci. 19 (4), 517–534 (2001).

    Article  Google Scholar 

  63. M. F. Zhou, P. T. Robinson, B. X. Su, J. F. Gao, J. W. Li, J. S. Yang, and J. Malpas, “Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments,” Gondwana Res. 26, 262–283 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. M. Galimov or F. V. Kaminsky.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galimov, E.M., Kaminsky, F.V. Diamond in the Oceanic Lithosphere. Volcanic Diamonds and Diamonds in Ophiolites. Geochem. Int. 59, 1–11 (2021). https://doi.org/10.1134/S0016702921010043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921010043

Keywords:

Navigation