Skip to main content
Log in

Late Neoprotherozoic Granitoid Magmatism of the Baikal-Muya Fold Belt, Ophiolite and Post-Ophiolite Plagiogranites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Three different-age series of granitoid veins and dikes of the Baikal–Muya fold belt were studied. Two of them, plagiogranites of the ophiolite complex and the first postophiolitic plagiogranites, are associated with the suprasubduction ophiolites of the eastern Baikal–Muya belt. The third series is represented by hypabyssal tonalite–plagiogranite–leucogranite complex of the Kichera zone in the western Baikal–Muya belt. The composition and isotope-geochemical characteristics (εNd(T) = –0.9; –1.3) of the plagiogranite veins no more than 60 cm thick, and εNd(T) values (–1.8…+ 0.2) of host layered leucocratic gabbros in the Sredne-Mamakan ophiolitic complex are consistent with the previously established suprasubduction nature of the ophiolite association. Tonalites and plagiogranites of the dyke system of the post-ophiolitic magmatic series intersect the dunite–pyroxenite–gabbro banded series of the Sredne-Mamakan ophiolites of the eastern Baikal–Muya fold zone. High Sr/Y ratios and low concentrations of Y and heavy REE indicate that these granitoids are ascribed to the adakite series. LA-ICP-MS study of zircon from post-ophiolitic plagiogranites yields the crystallization age of 629 ± 5 Ma. Sm–Nd isotope-geochemical characteristics of plagiogranitoids (εNd(T) = +2.5; +4.0) in combination with geochemical data confirm their origin during partial melting of a mafic protolith corresponding to the Neoproterozoic oceanic crust. The adakitic granitoids in the Kichera zone of the western Baikal–Muya belt belong to the tonalite–leucogranite differentiated series of the hypabyssal complex, which has no a direct spatial relationship with unambiguous ophiolite associations. The chemical composition and Sm–Nd isotope-geochemical characteristics of these rocks (εNd(T) = +3.2…+7.1) indicate the heterogeneity of the predominantly juvenile island-arc or oceanic Neoproterozoic crust, which experienced partial melting at 595 ± 5 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yu. V. Amelin, E. Yu. Rytsk, R. Sh. Krymskii, L. A. Neimark, and S. G. Skublov, “Vendian age of enderbite from a granulite complex of the Baikal–Muya ophiolite belt, Northern Baikal Region,” Dokl. Earth Sci. 370 (5), 455–457 (2000).

    Google Scholar 

  2. O. V. Avchenko. N. F. Gabov, and P. V. Kozyreva, et al., “Eclogites of the Northern Muya Block: composition and genesis,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 8, 150–158 (1988).

  3. P. R. Castillo, “An overview of adakites petrogenesis,” Chin. Sci. Bull. 51 (3), 257–268 (2006).

    Article  Google Scholar 

  4. R. G. Coleman, Ophiolites (Springer Verlag, New York, 1977).

    Book  Google Scholar 

  5. K. C. Condie, “TTG and adakites: are they both slab melts?,” Lithos 80, 33–44 (2005).

    Article  Google Scholar 

  6. M. J. Defant and M. S. Drummond, “Derivation of some modern arc magmas by melting of young subducted lithosphere,” Nature 347, 662–665 (1990).

    Article  Google Scholar 

  7. M. J. Defant and P. Kepezhinskas “Evidence suggests slab melting in arc magmas,” EOS 82 (6), 65–68 (2001).

    Article  Google Scholar 

  8. N. L. Dobretsov, “Ophiolites and problems of the Baikal–Muya ophiolite belt,” Magmatism and Metamorphism of the BAM zone and their Role in the Formation of Mineral Resources (1983), Vol. 1, pp. 11–19 [in Russian].

  9. N. L. Dobretsov, E. G. Konnikov, and N. N. Dobretsov, “Precambrian ophiolite belts of southern Siberia, Russia, and their metallogeny,” Precambrian Res. 58, 427–446 (1992).

    Article  Google Scholar 

  10. M. S. Drummond and M. J. Defant, “A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons,” J. Geophys. Res. 95, 21503–21521 (1990).

    Article  Google Scholar 

  11. M. S. Drummond, M. J. Defant, and P. K. Kepezhinskas, “Petrogenesis of slab–derived trondhjemite–tonalite–dacite/adakite magmas,” Trans. R. Soc. Edinb.: Earth Sci. 87, 205–215 (1996).

    Google Scholar 

  12. S. V. Efremov, “Early Paleozoic adakites in the Eastern Sayan: geochemistry and sources,” Geochem. Int. 48 (11), 1112–1127 (2010).

    Article  Google Scholar 

  13. A. A. Fedotova, A. A. Razumovskiy, E. V. Khain, M. O. Anosova, and A. V. Orlova, “Late Neoproterozoic igneous complexes of the Western Baikal–Muya Belt: formation stages,” Geotectonics 48 (4), 292–312 (2014).

    Article  Google Scholar 

  14. H. Furnes and Y. Dilek, “Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: a global synthesis,” Earth–Sci. Rev. 166, 1–37 (2017).

    Article  Google Scholar 

  15. N. F. Gabov, N. L. Dobretsov, and V. G. Kushev, “Eclogites and eclogite–like rocks in the Northern Baikal region,” Petrology and Mineralogy of the Mafic Rocks of Siberia (Nauka, Moscow, 1984), pp. 36–50 [in Russian].

    Google Scholar 

  16. A. E. Izokh, A. S. Gibsher, D. Z Zhuravlev, and P. A. Balykin, “Sm–Nd dating of the ultramafic–mafic massifs of the eastern branch of the Baikal–Muya ophiolite belt,” Dokl. Earth Sci. 360 (1), 525–529 (1998).

    Google Scholar 

  17. S. E. Jackson, N. J. Pearson, W. L. Griffin, and E. A. Belousova, “The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology,” Chem. Geol. 211, 47–69 (2004).

    Article  Google Scholar 

  18. E. V. Khain, E. B. Sal’nikova, A. B. Kotov, K.–P. Burgath, A. A. Fedotova, V. P. Kovach, S. Z. Yakovleva, D. N. Remizov, and F. Schaefer, “U–Pb age of plagiogranites from the ophiolite association in the Voykar–Synya massif, Polar Urals,” Dokl. Earth Sci. 419 (3), 392–396 (2008).

    Article  Google Scholar 

  19. K. A. Klitin, E. A. Domina, and G. V. Rile, “Structure and age of the ophiolite complex of the Baikal–Vitim Rise,” Byul. Mosk. O-va Ispyt. Prir., Nov. Ser., Otd. Geol. 80 (1), 82–94 (1975).

    Google Scholar 

  20. E. G. Konnikov and A. A. Tsygankov, “Heterogeneity of the Baikal–Muya ophiolite belt,” Dokl. Akad. Nauk 327 (1), 115–120 (1992).

    Google Scholar 

  21. E. G. Konnikov, V. F. Posokhov, and T. T. Vrublevskaya, “Genesis of plagiomigmatites in the Precambrian ophiolites of Northern Baikal region,” Geol. Geofiz., No. 1, 82–88 (1994).

  22. E. G. Konnikov, A. A. Tsygankov, and T. T. Vrublevskaya, “Baikal–Muya Volcanoplutonic Belt: Lithotectonic Complexes and Geodynamics (GEOS, Moscow, 1999) [in Russian].

    Google Scholar 

  23. Yu. A. Kostitsyn and A. Z. Zhuravlev, “Error analysis and optimization of isotope dilution method,” Geokhimiya, No. 7, 1024–1036 (1987).

    Google Scholar 

  24. Yu. A. Kostitsyn and M. O. Anosova, “U–Pb age of extrusive rocks in the Uxichan Caldera, Sredinnyi Range, Kamchatka: application of laser ablation in dating young zircons,” Geochem. Int. 51(2), 155–163 (2013).

    Article  Google Scholar 

  25. A. Kröner, A. A. Fedotova, E. V. Khain, et al., “Neoproterozoic ophiolite and related high–grade rocks of the Baikal–Muya belt, Siberia: geochronology and geodynamic implications,” J Asian Earth Sci. 111, 138–160 (2015).

    Article  Google Scholar 

  26. M. V. Luchitskaya, “Interrelation between granitoid accretionary and adakite magmatism at the Pacific active margin,” Dokl. Earth Sci. 385 (2), 525–529 (2002).

    Google Scholar 

  27. K. R. Ludwig, “Isoplot 3.75: A geochronological toolkit for Microsoft Excel,” Spec. Publ. Berkeley Geochronol. Center, no. 5 (2012. V. A. Makrygina, A. A. Koneva, and L. F. Piskunova, “Granulites in the Nyurundukan Series of the Northern Baikal region,” Dokl. Akad. Nauk SSSR 307 (1), 195–201 (1989).

    Google Scholar 

  28. V. A. Makrygina, E. G. Konnikov, L. A. Neimark, et al., “On the age of the granulite–charnockite complex in the Nyurundukan Group of the Northern Baikal region: a paradox of radiochronoogy,” Dokl. Akad. Nauk 332 (4), 486–489 (1993).

    Google Scholar 

  29. H. Martin, R. H. Smithies, R. Rapp, J. F. Moyen, and D. Champion, “An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implication for crustal evolution,” Lithos 79, 1–24 (2005).

    Article  Google Scholar 

  30. L. A. Neimark, E. Yu. Rytsk, B. M. Gorokhovskii, et al., “On the age of the “Muya” granites of the Baikal–Vitim ophiolite belt: U–Pb– and Sm–Nd–isotope data,” Dokl. Akad. Nauk 343 (5), 673–676 (1995).

    Google Scholar 

  31. A. V. Orlova, A. A. Razumovskii, N. M. Revyako, et al., “Affiliation of the Tonky Cape massif to the Chaya–Nyurundukan ultramafic–mafic complex, Northern Baikal region: Sm–Nd data,” Isotope Dating of Geological Processes: New Results, Approaches, and Prospects. 6 th All–Russian Conference on Isotope Geochronology (IGGD RAS, St. Petersburg, 2015), pp. 204–206 [in Russian].

  32. L. M. Parfenov, A. I. Khanchuk, et al., “Model of formation of orogenic belts of Central and Northeastern Asia,” Tikhookean. Geol. 22 (6), 7–41 (2003).

    Google Scholar 

  33. L. M. Parfenov, G. Badarch, N. A. Berzin, et al., “Tectonic and metallogenic model for Northeast Asia,” Metallogenesis and Tectonics of Northeast Asia, Ed. by W. J. Nokleberg, U.S. Geol. Surv. Prof. Pap. 1765, 9–1–9–55 (2010).

    Google Scholar 

  34. V. I. Perelyaev, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IZK SO RAS, Irkutsk, 2003) [in Russian].

  35. N. Petford and M. Atherton, “Na–rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru,” J. Petrol. 37 (6), 1491–1521 (1996).

    Article  Google Scholar 

  36. J. A. Pfänder, K. P. Jochum, I. Kozakov, et al., “Coupled evolution of back–arc and island arc–like mafic crust in the late–Neoproterozoic Agardagh Tes–Chem ophiolite, Central Asia; evidence from trace element and Sr–Nd–Pb isotope data,” Contrib. Mineral. Petrol. 143, 154–174 (2002).

    Article  Google Scholar 

  37. N. M. Revyako, Yu. A. Kostitsyn, and Ya. V. Bychkova, “Interaction between a mafic melt and host rocks during formation of the Kivakka layered intrusion, North Karelia,” Petrology 20 (2), 101–119 (2012).

    Article  Google Scholar 

  38. A. V. Ryazantsev, G. N. Savelieva, and A. A. Razumovsky, “Dike complexes in ophiolites of the Urals,” Geotectonics 49 (3), 36–55 (2015).

    Article  Google Scholar 

  39. E. Yu. Rytsk, Yu. V. Amelin, N. G. Rizvanova, R. Sh. Krimsky, G. L. Mitrofanov, N. N. Mitrofanova, V. I. Perelyaev, and V. S. Shalaev, “Age of rocks in the Baikal–Muya Foldbelt,” Stratigraphy. Geol. Correlation 9 (4), 315–326 (2001).

    Google Scholar 

  40. E. Yu. Rytsk, A. F. Makeev, V. A. Glebovitsky, and A. M. Fedoseenko, A Vendian (590 ± 5 Ma) age for the Padora Group in the Baikal–Muya Foldbelt: evidence from U–Pb Zircon data,” Dokl. Earth Sci. 397 (6), 765–767 (2004).

    Google Scholar 

  41. E. Yu. Rytsk, A. F. Makeev, V. A. Glebovitsky, and A. M. Fedoseenko, “Early Vendian Age of multiple gabbro–granite complexes of the Karalon–Mamakan Zone, Baikal–Muya Belt: new U–Pb zircon data,” Dokl. Earth Sci. 415A (6), 911–914 (2007a).

    Article  Google Scholar 

  42. Rytsk E. Yu., V. P. Kovach, V. I. Kovalenko, and V. V. Yarmolyuk, “Structure and evolution of the continental crust in the Baikal Fold Region,” Geotectonics 41 (6), 440–464 (2007b).

    Article  Google Scholar 

  43. E. Yu. Rytsk, A. B. Kotov, E. B. Salnikova, et al., “U–Pb geochronology of the gabbro–diorite–tonalit–granodiorite intrusions of the Baikal–Muya belt,” Geodynamic Evolution of Lithosphere of the Central Asian Orogenic Belt: from Ocean to Continent (IZK SO RAN, Irkutsk, 2012), vol. 2, p. 57 [in Russian].

    Google Scholar 

  44. L. I. Salop, Geology of the Baikal Mountainous Region (Nedra, Moscow, 1964) [in Russian].

    Google Scholar 

  45. G. N. Savelieva, N. S. Bortnikov, T. B. Bayanova, et al., “Sm–Nd and Rb–Sr isotopic systems and captured He and hydrocarbon gases as markers of melt sources and fluid regime under which the oceanic crust of the Mid–Atlantic Ridge was formed at 5°–6° N,” Geochem. Int. 46 (8), 745–758 (2008).

    Article  Google Scholar 

  46. V. S. Shatsky, E. S. Sitnikova, A. A. Tomilenko, A. L. Ragozin, O. A. Koz’menko, and E. Jagoutz,” “Eclogite–gneiss complex of the Muya block (East Siberia): age, mineralogy, geochemistry, ad petrology,” Russ. Geol. Geophys. 53 (6), 501–521 (2012).

    Article  Google Scholar 

  47. V. S. Shatsky, S. Yu. Skuzovatov, A. L. Ragozin, and S. I. Dril, “Evidence of Neoproterosoic continental subduction in the Baikal–Muya Fold Belt,” Dokl. Earth Sci. 459 (2), 1442–1445 (2014).

    Article  Google Scholar 

  48. S. A. Silantyev, J. Koepke, A. A. Ariskin, M. O. Anosova, E. A. Krasnova, E. O. Dubinina, and G. Suhr, “Geochemical nature and age of the plagiogranite–gabbronorite association of the oceanic core complex of the Mid–Atlantic Ridge at 5o10’S,” Petrology 22 (2), 109–127 (2014).

    Article  Google Scholar 

  49. E. V. Sklyarov, V. P. Kovach, A. B. kotov, et al., “Boninites and ophiolites: problems of heir relations and petrogenesis of boninites,” Russ. Geol. Geophys. 57 (1), 127–140 (2016).

    Article  Google Scholar 

  50. S. Skuzovatov, V. Shatsky, and K. L. Wang, “Continental subduction during arc–microcontinent collision in the southern Siberian craton: Constraints on protoliths and metamorphic evolution of the North Muya complex eclogites (Eastern Siberia),” Lithos 342–343, 76–96 (2019).

    Article  Google Scholar 

  51. A. V. Somsikova, A. A. Fedotova, V. I. Perelyaev, et al., “New Rb–Sr and Sm–Nd isotope–geochemical data on the rocks of the Srednemamakan ophiolite complex of the eastern Baikal–Muya fold belt,” Proc. 22th Vinogradov Symposium on Isotope Geochemistry (GEOKHI RAS, Moscow, 2019), p. 84 [in Russian].

  52. N. A. Sryvtsev, V. A. Khalilov, V. V. Buldygerov, and V. I. Perelyaev, “Geochronology of granitoids of the Baikal–Muya belt,” Geol. Geofiz., No. 9, 72–78 (1992).

  53. A. M. Stanevich and V. I. Perelyaev, “On Late Precarmbrian stratigraphy of the Sredne Vitim mountainous country,” Geol. Geofiz. 38 (10), 1642–1652 (1997).

    Google Scholar 

  54. A. M. Stanevich, A. M. Mazukabzov, A. A. Postnikov, V. K. Nemerov, S. A. Pisarevsky, D. P. Gladkochub, T. V. Donskaya, and T. A. Kornilova, “Northern segment of the Paleoasian ocean: Neoproterozoic deposition history and geodynamics,” Russ. Geol. Geophys. 48 (1), 46–60 (2007).

    Article  Google Scholar 

  55. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  56. T. Tanaka, S. Togashi, H. Kamioka, et al., “JNdi–1: a neodymium isotopic reference in consistency with LaJolla neodymium,” Chem. Geol. 168 (3–4), 279–281 (2000).

    Article  Google Scholar 

  57. B. Taylor and E. Martinez, “Back–arc basin basalt systematics,” Earth Planet. Sci. Lett. 210 (3–4), 481–497 (2003).

    Article  Google Scholar 

  58. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Scientific, Oxford, 1985).

    Google Scholar 

  59. A. A. Tsygankov, “Metavolcanic rocks of the Baika–Muya Ophiolite belt: geochemistry and correlation,” Geol. Geofiz. 39 (9), 1133–1147 (1998).

    Google Scholar 

  60. A. A. Tsygankov, Magmatic Evolution of the Baikal–Muya Volcanoplutonic Belt in the Late Precambrian (SO RAS, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  61. O. M. Turkina, “Tonalite–trondhjemite complexes of the suprasubduction settings: evidence from the Late Riphean plagiogranitoids of the SW margin of the Siberian Platform),” Geol. Geofiz. 43 (5), 418–431 (2002).

    Google Scholar 

  62. E. van Achterbergh, C. G. Ryanm, and W. L. Griffin, “GLITTER: On–line interactive data reduction for the Laser Ablation ICP–MS microprobe,” Proceedings of the 9th V.M. Goldschmidt Conference (Cambridge, 1999), p. 305.

  63. A. E. Vladimirov, N. K. Korobeinikov, and I. V. Chetverikov, State Geological Map of the Russian Federation on a Scale 1 : 200000, 2 nd Ed., Muya Series, Sheet O–50–XXV and Explanatory Note (VSEGEI, St. Petersburg, 2004) [in Russian].

  64. M. Wiedenbeck, P. Allé, F. Corfu, et al., “Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses,” Geostand. Newslett. 19 (1), 1–23 (1995).

    Article  Google Scholar 

  65. J. F. Xu, R. Shinjo, M. J. Defant, et al., “Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?,” Geology 30 (12), 1111–1114 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.A. Palandzhyan and G.E. Nekrasov for detailed discussion and important comments that significantly improved the manuscript. We thank V.I. Perelyaev, who provided insight into the geological structure of the Sredne-Mamakan ophiolite association during joint field works, T.I. Kirnozova for help in the optical study of zircon, and M.M. Fuzgan for organization support. E.Yu. Rytsk and its collegues are grateful for help in the organization of field works in the Northern Baikal region and for unresting activity on the geological and geochronological study of the Baikal Mountainous System, which excited us. We are grateful to M.V. Luchitskaya, S.A. Silantyev, and O.M. Turkina for constructive comments that helped in understanding obtained data.

Funding

This work was supported by the Russian Foundation for Basic Research (project mol_a 16-35-00600). The studies were carried out in the framework of the government–financed program of the Geological Institute of the Russian Academy of Sciences, theme no. 0135-2019-0051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Somsikova.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somsikova, A.V., Kostitsyn, Y.A., Fedotova, A.A. et al. Late Neoprotherozoic Granitoid Magmatism of the Baikal-Muya Fold Belt, Ophiolite and Post-Ophiolite Plagiogranites. Geochem. Int. 59, 12–31 (2021). https://doi.org/10.1134/S0016702921010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921010109

Keywords:

Navigation