Skip to main content
Log in

Population structure of two morphotypes of Sideroxylon mascatense (A.DC.) T.D.Penn. in Oman

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Sideroxylon mascatense (A.DC.) T.D.Penn is a wild fruit-producing plant belonging to the family Sapotaceae and found in North Africa, the Middle East, and parts of Asia. There are two main morphotypes according to existing literature, which are only known to coexist in Oman at high-altitudes, and are known by their vernacular names ‘Būt’ and ‘Hegimt’. For the current study, AFLP fingerprinting was used to analyze the molecular characteristics of these two morphotypes in Oman. The analysis revealed low to moderate levels of gene diversity for S. mascatense with h = 0.169–0.2148 varying by collection site. Genetic diversity of Būt was higher than that of Hegimt at h = 0.2093 and h = 0.1751 respectively. A moderate and significant level of genetic differentiation was found among morphotypes of S. mascatense (Fst = 0.1037 P-value < 0.00000; Nm = 2.16) according to the analysis of molecular variation (AMOVA). The cluster analysis separated the samples tested into two main clades, one with mostly ‘Būt’ and the other with mostly ‘Hegimt’ specimens. The current study, being the first of its type to analyze the molecular characteristics of S. mascatense, builds a foundation for future work on this unique mountain species that spans the arid regions of Asia and Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data can be shared upon request.

References

  • Al-Nadabi H, Khan M, Al-Yahyai RA, Al-Sadi AM (2018) AFLP fingerprinting analysis of Citrus cultivars and wild accessions from Oman suggests the presence of six distinct cultivars. Agric (Poľnohospodárstvo) 64:173–182. https://doi.org/10.2478/agri-2018-0018

    Article  Google Scholar 

  • Al-Sadi AM, Al-Moqbali HS, Al-Yahyai RA, Al-Said FA (2012) AFLP data suggest a potential role for the low genetic diversity of acid lime (Citrus aurantifolia Swingle) in Oman in the outbreak of witches’ broom disease of lime. Euphytica 188:285–297. https://doi.org/10.1007/s10681-012-0728-7

    Article  CAS  Google Scholar 

  • Al-Sadi AM, Al-Wehaibi AN, Al-Shariqi RM, Al-Hammadi MS, Al-Hosni IA, Al-Mahmooli IH, Al-Ghaithi AG (2013) Population genetic analysis reveals diversity in Lasiodiplodia species infecting date palm, Citrus, and mango in Oman and the UAE. Plant Dis 97:1363–1369. https://doi.org/10.1094/PDIS-03-13-0245-RE

    Article  CAS  PubMed  Google Scholar 

  • Al-Sadi AM, Al-Fahdi AR, Al-Yahyai RA, Al-Ghaithi AG, Al-Said FA, Soleiman MJ (2015) Genetic analysis suggests a shared origin of Punica granatum cultivars in Oman with cultivars from the center of origin Iran. Genet Resour Crop Evol 62:815–821. https://doi.org/10.1007/s10722-015-0256-0

    Article  Google Scholar 

  • Al-Subhi AM, Hogenhout SA, Al-Sadi AM, Al-Yahyai RA (2018) Detection, identification, and molecular characterization of the 16SrII-D phytoplasmas infecting vegetable and field crops in Oman. Plant Dis 102:576–588. https://doi.org/10.1094/PDIS-07-17-0935-RE

    Article  CAS  PubMed  Google Scholar 

  • Al-Yahyai RA, Al-Nabhani HS (2008) Botanical description and phenological cycles of Monotheca buxifolia. Acta Horticulturae 769:247–254

    Article  Google Scholar 

  • Anderberg AA, Swenson U (2003) Evolutionary lineages in Sapotaceae (Ericales): a cladistic analysis based on ndhF sequence data. Int J Plant Sci 164:763–773. https://doi.org/10.1086/376818

    Article  CAS  Google Scholar 

  • Aronson J, Aronson TB, Patzelt A, Knees SG, Lewis GP, Lupton D, Taifour H, Gardner MF, Thompson H, Al Hatmi S, Al Khulaidi AW (2017) Paleorelicts or archaeophytes: enigmatic trees in the middle east. J Arid Environ 137:69–82. https://doi.org/10.1016/j.jaridenv.2016.11.001

    Article  Google Scholar 

  • Belaj A, León L, Satovic Z, de la Rosa R (2011) Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Scientia Hortic 129:561–569. https://doi.org/10.1016/j.scienta.2011.04.025

    Article  Google Scholar 

  • Corazza-Nunes MJ, Machado MA, Nunes WMC, Cristofani M, Targon MLPN (2002) Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126(2):169–176

    Article  CAS  Google Scholar 

  • Dafreville S, Payet G, Simiand C, Risterucci AM, Rivière E, Lebreton G, Humeau L, Strasberg D, Chevallier MH (2011) Isolation and characterization of microsatellite markers of an endangered tropical tree, Sideroxylon majus, and cross-species amplification in other Sapotaceae species. Conserv Genet Resour 3:701–704. https://doi.org/10.1007/s12686-011-9437-0

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Esri (2019) DigitalGlobe (Basemap). Scale Not Given. “Imagery”. http://www.arcgis.com/home/webmap/viewer.html?useExisting=1. Accessed 13 November 2020

  • Esri (2019) National Geographic (Basemap). Scale Not Given. “National Geographic”. http://www.arcgis.com/home/webmap/viewer.html?useExisting=1. Accessed 13 November 2020

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  CAS  Google Scholar 

  • Ghazanfar SA (2003) Flora of Oman, vol 1. National Botanic Garden of Belgium, Meise

    Google Scholar 

  • He J, Chen L, Si Y, Huang B, Ban X, Wang Y (2009) Population structure and genetic diversity distribution in wild and cultivated populations of the traditional Chinese medicinal plant Magnolia officinalis subsp. biloba (Magnoliaceae). Genetica 135:233–243. https://doi.org/10.1007/s10709-008-9272-8

    Article  PubMed  Google Scholar 

  • Hopkins E, Al-Yahyai R (2020) Sideroxylon mascatense: a new crop for high elevation arid climates. J Agric Mar Sci 25:02–08

    Article  Google Scholar 

  • Khan N, Ahmed M, Wahab M, Ajaib M, Hussain SS (2010) Studies along an altitudinal gradient in Monotheca Buxifolia (Falc.) A.D., forest, district lower Dir Pakistan. Pak J Bot 42:3029–3038

    Google Scholar 

  • Louati M, Ucarli C, Arikan B, Ghada B, Hannachi AS, Turgut-Kara N (2019) Genetic, morphological, and biochemical diversity of Argan Tree Argania spinosa L Sapotaceae in Tunisia. Plants 8(9):319

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci 70:3321–3323. https://doi.org/10.1073/pnas.70.12.3321

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pakhrou O, Medraoui L, Yatrib C, Alami M, Souda-Kouraichi SI, El Mousadik A, Ferradous A, Msanda F, El Modafar C, Filali-Maltouf A, Belkadi B (2016) Study of genetic diversity and differentiation of argan tree population Argania spinosa L. using AFLP markers. Aust J Crop Sci 10(7): 990–999

  • Pennington TD (1991) The Genera of Sapotaceae. Royal Botanic Gardens, Kew

    Google Scholar 

  • Sari VK, Wulandari RA, Murti RH (2018) Study on diversity of Sapodilla (Manilkara zapota) by molecular marker in the special region of Yogyakarta. AGRIVITA J Agric Sci 40(2):295–303

    Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7:465–474

    Article  Google Scholar 

  • Schmidt-Lebuhn AN, Aitken NC, Chuah A (2017) Species trees from consensus single nucleotide polymorphism (SNP) data: testing phylogenetic approaches with simulated and empirical data. Mol Phylogenetics Evol 116:192–201. https://doi.org/10.1016/j.ympev.2017.07.018

    Article  Google Scholar 

  • Sheidai M, Mosaferi S, Keshavarzi M, Noormohammadi Z, Ghasemzadeh-Baraki S (2016) Genetic diversity in different populations of Persicaria minor (Polygonaceae), a medicinal plant. Nucleus 59:115–121. https://doi.org/10.1007/s13237-016-0169-0

    Article  Google Scholar 

  • Shiga T, Yokogawa M, Kaneko S, Isagi Y (2017) Genetic diversity and population structure of Nuphar submersa (Nymphaeaceae), a critically endangered aquatic plant endemic to Japan, and implications for its conservation. J Plant Res 130:83–93. https://doi.org/10.1007/s10265-016-0869-1

    Article  PubMed  Google Scholar 

  • Smedmark JEE, Anderberg AA (2007) Boreotropical migration explains hybridization between geographically distant lineages in the pantropical clade Sideroxyleae (Sapotaceae). Am J Bot 94:1491–1505. https://doi.org/10.3732/ajb.94.9.1491

    Article  PubMed  Google Scholar 

  • Smedmark JE, Swenson U, Anderberg AA (2006) Accounting for variation of substitution rates through time in Bayesian phylogeny reconstruction of Sapotoideae (Sapotaceae). Mol Phylogenetics Evol 39(3):706–721

    Article  CAS  Google Scholar 

  • Stride G, Nylinder S, Swenson U (2014) Revisiting the biogeography of Sideroxylon (Sapotaceae) and an evaluation of the taxonomic status of Argania and Spiniluma. Aus Syst Bot 27:104–118. https://doi.org/10.1071/SB14010

    Article  Google Scholar 

  • Swenson U, Anderson AA (2005) Phylogeny, character evolution, and classification of Sapotaceae (Ericales). Cladistics 21:101–130

    Article  Google Scholar 

  • Thulin M (2006) Flora of Somalia: Vol. 3. Royal Botanic Gardens, Kew, Edinburgh

  • Villalobos-Barrantes HM, García EG, Lowe AJ, Albertazzi FJ (2015) Genetic analysis of the dry forest timber tree Sideroxylon capiri in Costa Rica using AFLP. Plant Syst Evol 301:15–23. https://doi.org/10.1007/s00606-014-1049-1

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) A new technique for DNA fingerprinting. Nucl Acids Res 44:388–396. https://doi.org/10.1093/nar/23.21.4407

    Article  Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user- friendly shareware for population genetic analysis. University of Alberta, Edmonton, Alberta, Canada, Molecular Biology and Biotechnology Center

    Google Scholar 

  • Zushi K, Matsuzoe N (2015) Metabolic profile of organoleptic and health-promoting qualities in two tomato cultivars subjected to salt stress and their interactions using correlation network analysis. Sci Horticult 184:8–17. https://doi.org/10.1016/j.scienta.2014.12.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sultan Qaboos University for funding and supporting this Project. This work is partially funded by Sultan Qaboos University’s internal research Project (IG/AGR/CROP/18/03).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and research design, EH, and RAY; methodology, EH, RAY, and AMAS; field work, EH; laboratory analysis EH, AAS; data analysis EH, AMAS, AAS; writing−original draft and final manuscript EH. All authors commented on previous versions of the manuscript and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Eric Hopkins.

Ethics declarations

Conflict of interest

The authors declare there are no competing interests

Informed consent

All authors agreed to the publication of the present work

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopkins, E., Al-Yahyai, R., Al-Sadi, A.M. et al. Population structure of two morphotypes of Sideroxylon mascatense (A.DC.) T.D.Penn. in Oman. Genet Resour Crop Evol 68, 1299–1308 (2021). https://doi.org/10.1007/s10722-020-01105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-01105-0

Keywords

Navigation