Skip to main content
Log in

Flow over a Needle Moving in a Stream of Dissipative Fluid Having Variable Viscosity and Thermal Conductivity

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this article, the boundary layer flow around a thin needle is examined. Non-constant thermal conductivity as well as viscosity is the art of present study. Governing equations are modeled in the presence of frictional heating and are simplified by utilizing boundary layer assumptions. To obtain a self-similar solution, boundary layer equations are further transformed into dimensionless forms by utilizing axisymmetric similarity variables. For further investigation of the problem, attained self-similar nonlinear equations with suitable boundary conditions are solved numerically using MATLAB bvp5c. A comparative study with existing findings is carried out. Impact of velocity ratio parameter, size of the needle, variable viscosity parameter, Prandtl number, fluid friction and variable thermal conductivity parameters on dimensionless velocity, skin friction coefficient, temperature and local Nusselt number are investigated through graphical analysis. It is observed that flow with variable viscosity and thermal conductivity is significantly different and realistic in comparison with constant properties-based flow. It is also noted that the temperature of the fluid and the thickness of the thermal boundary layer are related directly to reduction in needle size. Further, considerable enhancement is observed in heat transfer rate for the variable properties case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ling, J.X.; Dybbs, A.: The effect of variable viscosity on forced convection over a flat plate submersed in a porous medium. J. Heat Transf. 114, 1063–1064 (1992)

    Article  Google Scholar 

  2. Shin, S.; Cho, Y.I.; Gringrich, K.W.; Shyy, W.: Numerical study of laminar heat transfer with temperature dependent fluid viscosity in a 2:1 rectangular duct. Int. J. Heat Mass Transf. 36, 4365–4373 (1993)

    Article  Google Scholar 

  3. Kafoussias, N.G.; Williams, E.W.: The effect of temperature-dependent viscosity on free-forced convective laminar boundary layer flow past a vertical isothermal fiat plate. Acta Mech. 110, 123–137 (1995)

    Article  MATH  Google Scholar 

  4. Kays, W.M.: Convective Heat and Mass Transfer. Mcgraw-Hill, New York (1966)

    Google Scholar 

  5. Makinde, O.D.; Olanrewaju, P.O.: Buoyancy effects on thermal boundary layer over a vertical plate with a convective surface boundary condition. J. Fluids Eng. 132, 044502 (2010)

    Article  Google Scholar 

  6. Mahdy, A.; Ahmed, S.E.: Laminar free convection over a vertical wavy surface in a porous medium saturated with a nanofluid. Transp. Porous Media 91, 423–435 (2012)

    Article  MathSciNet  Google Scholar 

  7. Salleh, M.Z.; Nazar, R.; Pop, I.: Mixed convection boundary layer flow over a horizontal circular cylinder with Newtonian heating. Heat Mass Transf. 46, 1411–1418 (2010)

    Article  Google Scholar 

  8. Salleh, M.Z.; Nazar, R.; Pop, I.: Modeling of free convection boundary layer flow on a solid sphere with Newtonian heating. Acta Appl. Math. 112, 263–274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, L.L.: Boundary layer flow over a thin needle. Phys. Fluids 10, 820–822 (1967)

    Article  MATH  Google Scholar 

  10. Nadeem, S.; Saleem, S.: Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame. J. Taiwan Inst. Chem. Eng. 44, 596–604 (2013)

    Article  Google Scholar 

  11. Chamkha, A.J.; Doostanidezfuli, A.; Izadpanahi, E.; Ghalambaz, M.: Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv. Powder Technol. 28, 385–397 (2017)

    Article  Google Scholar 

  12. Sheikholeslami, M.: Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J. Mol. Liq. 229, 137–147 (2017)

    Article  Google Scholar 

  13. Nadeem, S.; Akbar, N.S.: Influence of heat and mass transfer on the peristaltic flow of a Johnson Segalman fluid in a vertical asymmetric channel with induced MHD. J. Taiwan Inst. Chem. Eng. 42, 58–66 (2011)

    Article  Google Scholar 

  14. Noreen, S.; Kausar, T.; Tripathi, D.; Ain, Q.U.; Lu, D.C.: Heat transfer analysis on creeping flow Carreau fluid driven by peristaltic pumping in an inclined asymmetric channel. Therm. Sci. Eng. Prog. 171, 100486 (2020)

    Article  Google Scholar 

  15. Schlichting, H.; Gersten, K.: Boundary-Layer Theory. Springer, Berlin (2016)

    MATH  Google Scholar 

  16. Cebeci, T.; Na, T.Y.: Laminar free convection heat transfer from a needle. Phys. Fluids 12, 463–465 (1969)

    Article  MATH  Google Scholar 

  17. Narian, J.P.; Uberoi, M.S.: Combined forced and free convection over thin needle. Int. J. Heat Mass Transf. 16, 1505–1512 (1973)

    Article  Google Scholar 

  18. Chen, J.L.S.; Smith, T.N.: Forced convection heat transfer from non-isothermal thin needles. J. Heat Transf. 100, 358–362 (1978)

    Article  Google Scholar 

  19. Wang, C.Y.: Mixed convection on a vertical needle with heated tip. Phys. Fluids A 2, 622–625 (1990)

    Article  Google Scholar 

  20. Ishak, A.; Nazar, R.; Pop, I.: Boundary layer flow over a continuously moving thin needle in a parallel free stream. Chin. Phys. Lett. 24, 2895–2897 (2007)

    Article  Google Scholar 

  21. Afridi, M.I.; Qasim, M.: Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation. Int. J. Therm. Sci. 123, 117–128 (2018)

    Article  Google Scholar 

  22. Salleh, S.N.A.; Bachok, N.; Arifin, N.M.; Ali, F.M.; Pop, I.: Stability analysis of mixed convection flow towards a moving thin needle in nanofluid. Appl. Sci. 8, 1–16 (2018)

    Article  Google Scholar 

  23. Sulochana, C.; Ashwinkumar, G.P.; Sandeep, N.: Boundary layer analysis of persistent moving horizontal needle in magnetohydrodynamic ferrofluid: a numerical study. Alex. Eng. J. 57, 2559–2566 (2018)

    Article  Google Scholar 

  24. Afridi, M.I.; Tlili, I.; Qasim, M.; Khan, I.: Nonlinear Rosseland thermal radiation and energy dissipation effects on entropy generation in CNTs suspended nanofluids flow over a thin needle. Bound. Value Probl. 148, 1–14 (2018)

    MathSciNet  Google Scholar 

  25. Tlili, I.; Ramzan, M.; Kadry, S.; Kim, H.W.; Nam, Y.: Radiative MHD nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and Hall current. Entropy (2020). https://doi.org/10.3390/e22030354

    Article  MathSciNet  Google Scholar 

  26. Ramzan, M.; Gul, H.; Kadry, S.; Lim, C.; Nam, Y.; Howari, F.: Impact of nonlinear chemical reaction and melting heat transfer on an MHD nanofluid flow over a thin needle in porous media. Appl. Sci. (2019). https://doi.org/10.3390/app9245492

    Article  Google Scholar 

  27. Nayak, M.K.; Wakif, A.; Animasaun, I.L.; Alaou, M.S.H.: Numerical differential quadrature examination of steady mixed convection nanofluid flows over an isothermal thin needle conveying metallic and metallic oxide nanomaterials: a comparative investigation. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04420

    Article  Google Scholar 

  28. Lai, F.; Kulacki, F.: The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium. Int. J. Heat Mass Transf. 33, 1028–1031 (1990)

    Article  Google Scholar 

  29. Makinde, O.D.: Entropy-generation analysis for variable-viscosity channel flow with non-uniform wall temperature. Appl. Energy 85, 384–393 (2008)

    Article  Google Scholar 

  30. Chamkha, A.J.; EL-KabeirRashad, S.M.M.A.M.: Heat and mass transfer by non-Darcy free convection from a vertical cylinder embedded in porous media with a temperature-dependent viscosity. Int. J. Numer. Methods Heat Fluid Flow 21, 847–863 (2011)

    Article  Google Scholar 

  31. Turkyilmazoglu, M.: Thermal radiation effects on the time dependent MHD permeable flow having variable viscosity. Int. J. Therm. Sci. 50, 88–96 (2011)

    Article  Google Scholar 

  32. Ramzan, M.; Bilal, M.; Kanwal, S.; Chung, J.D.: Effects of variable thermal conductivity and non-linear thermal radiation past an Eyring Powell nanofluid flow with chemical reaction. Commun. Theor. Phys. 67, 723–731 (2017)

    Article  MathSciNet  Google Scholar 

  33. Qasim, M.; Afridi, M.I.: Effects of energy dissipation and variable thermal conductivity on entropy generation rate in mixed convection flow. J. Therm. Sci. Eng. Appl. 10, 044501 (2018)

    Article  Google Scholar 

  34. Kierzenka, J.; Shampine, L.F.: A BVP solver that controls residual and error. J. Numer. Anal. Ind. Appl. Math. 3, 27–41 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Gilat, A.; Subramaniam, V.: Numerical Methods for Engineers and Scientists: An Introduction with Applications using MATLAB. Wiley, New York (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Qasim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, M., Riaz, N., Lu, D. et al. Flow over a Needle Moving in a Stream of Dissipative Fluid Having Variable Viscosity and Thermal Conductivity. Arab J Sci Eng 46, 7295–7302 (2021). https://doi.org/10.1007/s13369-021-05352-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05352-w

Keywords

Navigation