Skip to main content
Log in

A Study on Polythiophene Modified Carbon Cloth as Anode in Microbial Fuel Cell for Lead Removal

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the performance of carbon cloth (CC) modified with iodine (I2) doped polythiophene nanoparticles (PTh-NP) as an anode was investigated in a double chamber microbial fuel cell (MFC) for the purpose of simultaneous power generation and lead (Pb2+) removal using Shewanella putrefaciens as the biocatalyst. The CC with I2 doped PTh-NP displayed good electrochemical characteristics compared to pristine CC and the CC with undoped PTh-NP. A further increase in the electrical conductivity using the modified CC with biofilm was observed, which matured after 51 h, as evident from cyclic voltametry. The removal of lead for concentrations, viz., 20 ppm, 30 ppm, and 40 ppm, was analyzed. The optimum concentration was found to be 30 ppm with a maximum power density of 0.84 W/m2 and a current density of 1.45 A/m2 at an optimum resistance of 250 ohms. At the end of the process, total organic carbon (TOC) and Pb2+ removal of 95.1% and 89.6%, respectively, were obtained at the optimum concentration. Hence, this study demonstrates the possibility of utilizing MFC for treating low concentrated metal wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma, T.; Mohana Reddy, A.L.; Chandra, T.S.; Ramaprabhu, S.: Development of carbon nanotubes and nanofluids based microbial fuel cell. Int. J. Hydrogen Energy 33, 6749–6754 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.112

    Article  Google Scholar 

  2. Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I.: Microbial fuel cells: from fundamentals to applications: A review. J. Power Sources 356, 225–244 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  Google Scholar 

  3. Zhao, F.; Slade, R.C.T.; Varcoe, J.R.: Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem. Soc. Rev. 38, 1926 (2009). https://doi.org/10.1039/b819866g

    Article  Google Scholar 

  4. Das, S.; Mangwani, N.: Recent developments in microbial fuel cells: a review. J Sci Ind. Res. (India) 69, 727–731 (2010)

    Google Scholar 

  5. Liang, P.; Wang, H.; Xia, X.: Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosens. Bioelectron. 26, 3000–3004 (2011). https://doi.org/10.1016/j.bios.2010.12.002

    Article  Google Scholar 

  6. Mustakeem, M.: Electrode materials for microbial fuel cells: nanomaterial approach. Mater. Renew. Sustain. Energy 4, 1–11 (2015). https://doi.org/10.1007/s40243-015-0063-8

    Article  Google Scholar 

  7. Kang, Y.L.; Ibrahim, S.; Pichiah, S.: Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour. Technol. 189, 364–369 (2015). https://doi.org/10.1016/j.biortech.2015.04.044

    Article  Google Scholar 

  8. Li, C.; Zhang, L.; Ding, L.: Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens. Bioelectron. 26, 4169–4176 (2011). https://doi.org/10.1016/j.bios.2011.04.018

    Article  Google Scholar 

  9. Qiao, Y.; Bao, S.J.; Li, C.M.: Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2, 113–119 (2008). https://doi.org/10.1021/nn700102s

    Article  Google Scholar 

  10. Chi, M.: Graphite felt anode modified by electropolymerization of nano-polypyrrole to improve microbial fuel cell (MFC) production of bioelectricity. J Microb. Biochem. Technol. 1, 10–13 (2013). https://doi.org/10.4172/1948-5948.S12-004

    Article  Google Scholar 

  11. Sumisha, A.; Haribabu, K.: Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study. Int J Hydrogen Energy 43, 3308–3316 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.175

    Article  Google Scholar 

  12. Dharma, K.; Atsushi, M.; Kohtaro, O.; Takakazu, : Iodine Doping of Poly(thiophene-2,5-diyl) and Poly(3-alkylthiophene-2,5-diyl)s in Aqueous Media. Polym. J. 30, 860–862 (1998)

    Article  Google Scholar 

  13. Sumisha, A.; Jiben, A.; Aswathy, A.; Haribabu, K.: Reduction of copper and generation of energy in double chamber microbial fuel cell using Shewanella putrefaciens. Separ. Sci. Technol. 55, 2391–2399 (2020)

    Article  Google Scholar 

  14. Handan, U.; Kemal, B.; Yusuf, K.; Avni, C.; Faruk, A.: Biosorption of lead (II) from aqueous solution by cone biomass of Pinus sylvestris. Desalination 154, 233–238 (2003)

    Article  Google Scholar 

  15. Biswas, S.; Mishra, U.: Continuous fixed-bed column study and adsorption modeling: removal of lead ion from aqueous solution by charcoal originated from chemical carbonization of rubber wood sawdust. J. Chem. 2015, 1–9 (2015)

    Google Scholar 

  16. Li, X.G.; Li, J.; Huang, M.R.: Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles. Chem. A Eur. J. 15, 6446–6455 (2009). https://doi.org/10.1002/chem.200900181

    Article  Google Scholar 

  17. Ringeisen, B.R.; Ray, R.; Little, B.: A miniature microbial fuel cell operating with an aerobic anode chamber. J. Power Sources 165, 591–597 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.026

    Article  Google Scholar 

  18. Sumisha, A.; Anju, K.; Srinivas, P.; Haribabu, K.: Energy generation in single chamber microbial fuel cell from pure and mixed culture bacteria by copper reduction. Arab. J. Sci. Eng. 45, 7719–7724 (2020)

    Article  Google Scholar 

  19. Senthilkumar, B.; Thenamirtham, P.; Kalai Selvan, R.: Structural and electrochemical properties of polythiophene. Appl. Surf. Sci. 257, 9063–9067 (2011). https://doi.org/10.1016/j.apsusc.2011.05.100

    Article  Google Scholar 

  20. Gök, A.; Omastová, M.; Yavuz, A.G.: Synthesis and characterization of polythiophenes prepared in the presence of surfactants. Synth. Met. 157, 23–29 (2007). https://doi.org/10.1016/j.synthmet.2006.11.012

    Article  Google Scholar 

  21. Sakthivel, S.; Boopathi, A.: Synthesis and preparation of polythiophene thin film by spin coating method. J. Chem. Chem. Sci. 4, 150–155 (2014). https://doi.org/10.1016/j.snb.2005.10.019

    Article  Google Scholar 

  22. Bazaka, K.; Jacob, M.: Effects of iodine doping on optoelectronic and chemical properties of polyterpenol thin films. Nanomaterials 7, 1–16 (2017). https://doi.org/10.3390/nano7010011

    Article  Google Scholar 

  23. Kramer, J.; Soukiazian, S.; Mahoney, S.; Hicks-Garner, J.: Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface modified carbon foam anodes. J. Power Sources 210, 122–128 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.022

    Article  Google Scholar 

  24. Wu, Y.; Zhao, X.; Jin, M.: Copper removal and microbial community analysis in single-chamber microbial fuel cell. Bioresour. Technol. 253, 372–377 (2018). https://doi.org/10.1016/j.biortech.2018.01.046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gnana Prakash Dhakshina Moorthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, R., Dhakshina Moorthy, G.P., Krishnan, H. et al. A Study on Polythiophene Modified Carbon Cloth as Anode in Microbial Fuel Cell for Lead Removal. Arab J Sci Eng 46, 6695–6701 (2021). https://doi.org/10.1007/s13369-021-05402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05402-3

Keywords

Navigation