Skip to main content
Log in

Magnetic Materials Based on Layered Double Hydroxides

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Composite materials that contain tetracationic hydrotalcite-like layered double hydroxide and a cobalt-iron spinel phase were prepared by coprecipitation from a solution of a mixture of magnesium, aluminum, cobalt(II), and iron(III) salts followed by hydrothermal treatment. The iron and cobalt contents in the samples were varied within a broad range. The thermal transformations of the prepared composites were examined by high-temperature X-ray diffraction, and the layered hydroxide phase was found to remain when heated up to 300°C. The specific magnetization and magnetic susceptibility of the materials were determined using a vibrating sample magnetometer; a rise in the iron and cobalt contents was found to increase the magnetization up to a certain limit. The obtained samples can be used as magnetic sorbents. The sorption capacity of materials was estimated using Congo red anionic dye as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cavani, F., Trifirò, F., and Vaccari, A., Catal. Today, 1991, vol. 11, p. 173. https://doi.org/10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  2. Tretyakov, Yu.D., Lukashin, A.V., and Eliseev, A.A., Russ. Chem. Rev., 2004, vol. 73, no. 9, p. 899. https://doi.org/10.1070/RC2004v073n09ABEH000918

    Article  CAS  Google Scholar 

  3. Kuljiraseth, J., Wangriya, A., Malones, J.M.C., Klysubun, W., and Jitkarnka, S., Appl. Catal. B: Environmental, 2019, vol. 243, p. 415. https://doi.org/10.1016/j.apcatb.2018.10.073

    Article  CAS  Google Scholar 

  4. Kankan, B., Sanchai, K., Jiang, D., Hongrui, L., Tingting, Y., Guorong, C., and Liyi, S., Appl. Catal. B: Environmental, 2019, vol. 252, p. 86. https://doi.org/10.1016/j.apcatb.2019.04.007

    Article  CAS  Google Scholar 

  5. Krylova, M.V., Kulikov, A.B., Knyazev, M.I., and Krylova, A.Yu., Chem. Technol. Fuels and Oils, 2008, vol. 44, p. 339. https://doi.org/10.1007/s10553-008-0064-8

    Article  CAS  Google Scholar 

  6. Li, Q., Xing, L., Lu, X., Li, N., and Mingxiang, X., Inorg. Chem. Commun., 2015, vol. 52, p. 46. https://doi.org/10.1016/j.inoche.2014.12.014

    Article  CAS  Google Scholar 

  7. Fan, G., Li, F., Evans, D.G., and Duan, X., Chem. Soc. Rev., 2014, no. 43, p. 7040. https://doi.org/10.1039/C4CS00160E

    Article  CAS  PubMed  Google Scholar 

  8. Rives, V., del Arco, M., and Martín, C., J. Control. Release, 2013, no. 169, p. 28. https://doi.org/10.1016/j.jconrel.2013.03.034

    Article  CAS  PubMed  Google Scholar 

  9. Lei, C., Zhu, X., Zhu, B., Jiang, C., Le, Y., and Yu, J., J. Hazardous Mater., 2017, vol. 321, p. 801. https://doi.org/10.1016/j.jhazmat.2016.09.070

    Article  CAS  Google Scholar 

  10. Goh, K.-H., Lim, T.-T., and Dong, Z., Water Res., 2008, vol. 42, p. 1343. https://doi.org/10.1016/j.watres.2007.10.043

    Article  CAS  PubMed  Google Scholar 

  11. Chuang, Y.H., Tzou, Y.M., Wang, M.K., Liu, C.H., and Chiang, P.N., Ind. Eng. Chem. Res., 2008, vol. 47, p. 3813. https://doi.org/10.1021/ie071508e

    Article  CAS  Google Scholar 

  12. Kameda, T., Tsuchiya, Y., Yamazaki, T., and Yoshioka, T., Solid State Sci., 2009, vol. 11, p. 2060. https://doi.org/10.1016/j.solidstatesciences.2009.09.008

    Article  CAS  Google Scholar 

  13. Chaara, D., Pavlovic, I., Bruna, F., Ulibarri, M.A., Draoui, K., and Barriga, C., Appl. Clay Sci., 2010, vol. 50, p. 292. https://doi.org/10.1016/j.clay.2010.08.002

    Article  CAS  Google Scholar 

  14. Ivanets, A.I., Srivastava, V., Roshchina, M.Yu., Sillanpää, M., Prozorovich, V.G.,and Pankov, V.V., Ceramics Int., vol. 44, no. 8, p. 9097. https://doi.org/10.1016/j.ceramint.2018.02.117

  15. Li, W., Zhang, J., Zhu, W., Qin, P., Zhou, Q., Lu, M., Zhao, W., Zhang, S., and Cai, Z., Talanta, 2020, vol. 208, p. 120440. https://doi.org/10.1016/j.talanta.2019.120440

    Article  CAS  PubMed  Google Scholar 

  16. Ryl’tsova, I., Tarasenko, E., Nestroinaya, O., and Lebedeva, O., Sorbts. Khromatograf. Protses., 2019, vol. 19, no. 3, p. 305. https://doi.org/10.17308/sorpchrom.2019.19/747

    Article  CAS  Google Scholar 

  17. Nestroinia, O.V., Ryl’tsova, I.G., Yapryntsev, M.N., and Lebedeva, O.E., Inorg. Mater., 2020, vol. 56, no. 7, p. 747. https://doi.org/10.1134/S0020168520070109

    Article  CAS  Google Scholar 

  18. Kanezaki, E., Solid State Ionics, 1998, vol. 106, nos. 3–4, p. 279. https://doi.org/10.1016/S0167-2738(97)00494-3

    Article  CAS  Google Scholar 

  19. Radha, A.V., Thomas, G.S., Kamath, P.V., Antonyraj, C.A., and Kannan, S., Bull. Mater. Sci., 2010, vol. 33, no. 3, p. 319. https://doi.org/10.1007/s12034-010-0049-1

    Article  CAS  Google Scholar 

  20. Vaysse, C., Guerlou-Demourgues, L., and Delmas, C., Inorg. Chem., 2002, vol. 41, no. 25, p. 6905. https://doi.org/10.1021/ic025542r

    Article  CAS  PubMed  Google Scholar 

  21. Ortiz-Quiñonez, J.-L., Pal, U., and Villanueva, M., ACS Omega, 2018, vol. 3, no. 11, p. 14986. https://doi.org/10.1021/acsomega.8b02229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frolov, G.I., Bachina, O.I., Zav’yalova, M.M., and Ravochkin, S.I., Tech. Phys., 2008, vol. 53, p. 1059. https://doi.org/10.1134/S1063784208080136

    Article  CAS  Google Scholar 

  23. Ho, Y.S. and McKay, G., Process Biochem., 1999, vol. 34, p. 451. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  24. Giles, C.H., MacEwan, T.H., Nakhwa, S.N., and Smith, D., J. Chem. Soc., 1960, p. 3973. https://doi.org/10.1039/JR9600003973

Download references

Funding

The study described here was financially supported by a grant from the Russian Foundation for Basic Research (project no. 18-29-310011 mk). The study was carried out using scientific equipment of “Technologies and Materials” Center for Collective Use at the Belgorod State National Research University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Lebedeva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Sovremennye Molekulyarnye Sita. Advanced Molecular Sieves, 2021, Vol. 3, No. 1, pp. 143–148.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestroinaya, O.V., Ryl’tsova, I.G., Tarasenko, E.A. et al. Magnetic Materials Based on Layered Double Hydroxides. Pet. Chem. 61, 388–393 (2021). https://doi.org/10.1134/S096554412103004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412103004X

Keywords:

Navigation