Skip to main content
Log in

On the Genesis of “White Granite” from the Kester Harpolith, Arga–Ynnakh–Khaya Pluton, East Yakutia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—The problem of the origin of “white granite” in the Kester harpolith of the Arga–Ynnakh–Khaya Pluton is discussed. The morphology, occurrence, and nature of the intrusive contacts of the Kester harpolith prove its magmatic origin. The petrographic and petrochemical properties of “white granite” allow its identification as a postorogenic rare-metal high-phosphorus granite of the Li-F geochemical type. The magmatic genesis of the “white granite” texture is supported by statistical methods. The composition, typomorphic properties, ontogenetic features internal structure and relationship of accessory minerals indicate that the major accessories of the granite, that is, cassiterite, columbite, tantalite, “wolframoixiolite,” zircon, and ferberite, were formed at the late stage of the low-temperature rare-metal granitic melt. The Kester harpolith within the Arga–Ynnakh–Khaya granite pluton and the eponymous tin–rare-metal deposit genetically related to it are a part of the Far East Superprovince of rare-metal granites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The Kester Complex has been abolished from the Q-53 sheet of the State Geological Map 1000/3 on the ground that rare-metal granites are considered metasomatic (State ..., 2016).

REFERENCES

  1. Alekseev, V.I., About an origin of lithium-fluoric granite in the Northern massif (Chukotka), Zap. Ross. Mineral. O-va, 2005, no., pp. 19–30.

  2. Alekseev, V.I., Litii-ftoristye granity Dal’nego Vostoka (Lithium-Fluoric Granites of the Far East), St Petersburg: Saint-Petersburg Mining University, 2014.

  3. Alekseev, V.I., Marin, Yu.B., and Galankina, O.L., Wolframoixiolite in lithium-fluoric granites of the Arga–Ynnakh–Khaysky massif, Yakutia, Zap. Ross. Mineral. O-va, 2019, no. 3, pp. 44–58.

  4. Alfonso, P., Hamid, S.A., Garcia-Valles, M., Llorens, T., Moro, F.J.L., Tomasa, O., Calvo, D., Guasch, E., Anticoi, H., Oliva, J., Parcerisa, D., and Polonio, F.G., Textural and mineral-chemistry constraints on columbite-group minerals in the Penouta deposit: evidence from magmatic and fluid-related processes, Mineral. Mag., 2018, vol. 82, pp. 199–S222.

    Article  Google Scholar 

  5. Belkasmi, M., Cuney, M., Pollard, P.J., and Bastoul, A., Chemistry of the Ta–Nb–Sn–W oxide minerals from the Yichun rare metal granite (SE China): genetic implications and comparison with Moroccan and French Hercynian examples, Mineral. Mag, 2000, vol. 64, no. 3, pp. 507–523.

    Article  Google Scholar 

  6. Beskin, S.M., Larin, V.N., and Marin, Yu.B., Redkometal’nye granitovye formatsii, (Rare-Metal Granite Formations), Leningrad: Nedra, 1979.

  7. Beskin, S.M., Marin, Yu.B., Matias, V.V., and Gavrilova, S.P., What does it really mean: “rare-metal granite”? Zap. Ross. Mineral. O-va, 1999, no. 6, pp. 28–40.

  8. Beus, A.A., Severov, E.A., Sitnin, A.A., and Subbotin, K.D., Al’bitizirovannyie i greizenizirovannye granite (apogranity), (Albitized and Greisenized Granites (Apogranite)), Moscow: Acad. Nauk USSR, 1962.

  9. Breiter, K., Korbelova, Z., Chladek, S., Uher, P., Knesl, I., Rambousek, P., Honig, S., and Sesulka, V., Diversity of Ti–Sn–W–Nb–Ta oxide minerals in the classic granite related magmatic–hydrothermal Cinovec/Zinnwald Sn–W–Li deposit (Czech Republic). Europ. J. Mineral., 2017, vol. 29, pp. 727–738.

    Article  Google Scholar 

  10. Brodskaya, R.L. and Marin, Yu.B., Ontogenetic analysis of mineral individuals and aggregates at microand nanolevel for the restoration of ore-forming conditions and assessment of mineral raw technological properties, Zap. Gorn. Inst., 2016, vol. 219, pp. 369–376.

    Google Scholar 

  11. Chaikovsky, V.K., Geologiya olovonosnykh mestorozhdenii Severo-Vostoka SSSR (Geology of Tin-Bearing Deposits of Soviet Nortehast) Moscow: Gosgeoltekhizdat, 1960.

  12. Chevychelov, V.Yu., Borodulin, G.P., and Zaraiskiy, G.P., Solubility of columbite (Mn, Fe)(Nb,Ta)2O6 in granitoid and alkaline melts at 650–850°C and 30-400 MPa: an experimental investigation, Geochem. Int., 2010, vol. 48, no. 5, pp. 456–464.

    Article  Google Scholar 

  13. Cuney, M., Marignac, C., and Weisbrod, A., The Beauvoir topaz–lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn–Li–Ta–Nb–Be mineralization, Econ. Geol., 1992, vol. 87, pp. 1766–1794.

    Article  Google Scholar 

  14. Efremenko, E.A., High-aluminous granitoid formation in the Yana–Borulakh ore district of Yakutia, Geol. Geofiz., 1976, no. 3, pp. 33–44.

  15. Emam, A., Zoheir, B., Radwan, A.M., Lehmann, B., Zhang, R.Q., Fawzy, S., and Nolte, N., Petrogenesis and evolution of the Nuweibi rare-metal granite, Central Eastern Desert, Egypt, Arabian J. Geosci., 2018, vol. 11, no. 23, paper 736.

  16. Flerov, B.L., Indolev, L.N., Yakovlev, Ya.V., and Bichus, B.Ya., Geologiya I genesis oovorudnykh mestorozhdenii Yakutii (Geology and Genesis of Tin-Bearing Deposits of Yakutia), Moscow: Nauka, 1971.

  17. Huang, X.L., Wang, R.Ch., Chen, X.M., Hu, H., and Liu, C.S., Vertical variations in the mineralogy of the Yichun topaz–lepidolite granite, Jiangxi Province, southern China, Can. Mineral., 2002, vol. 40, pp. 1047–1068.

  18. Ivanov O.P. Formations analysis of tin-bearing deposits in the Yano-Borulakh district, Rudoobrazovanie i ego svyaz’ s magmatizmom (Ore Formation and its Relation with Magmatism), Yakutsk: Yakut book publishing house, 1969, pp. 67–70.

  19. Johan, V. and Johan, Z., Accessory minerals of the Cinovec (Zinnwald) granite cupola, Czech Republic. Part 1. Nb-, Ta- and Ti-bearing oxides, Mineral. Petrol., 1994, vol. 51, pp. 323–343.

    Article  Google Scholar 

  20. Kempe, U., Gruner, T., Renno, A.D., Wolf, D., and Rene, M., Discussion on Wang et al. (2000): Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites, Eastern China, Mineral. Mag., 2004. Vol. 68, no. 4, pp. 669–675.

    Article  Google Scholar 

  21. Kokunin, M.V., Rare minerals of the forgotten deposit, Otechestvennaya Geol., 2011, no. 1, pp. 72–82.

  22. Koval’, P.V., Petrologiya i geokhimiya al’bitizirovannykh granitov (Petrology and Geochemistry of Albitized Granites), Novosibirsk: Nauka, 1975.

  23. Kovalenko, V.I., Petrologiya i geokhimiya redkometal’nykh granitov (Petrology and Geochemistry of Rare-Metal Granitoids), Novosibirsk: Nauka, 1977.

  24. Kudrin, V.S., Stavrov, O.D., and Shuriga, T.N., New spodumene type of tantalum-bearing rare-metal granite, Petrologiya, 1994, vol. 2, no. 1, pp. 88–95.

    Google Scholar 

  25. Maeda, J., Opening of the Kuril Basin deduced from the magmatic history of Central Hokkaido, North Japan, Tectonophysics, 1990, vol. 174, pp. 235–255.

    Google Scholar 

  26. Maksimyuk, I.E. and Voronina, L.B., Cassiterite, Tipomorfism mineralov (Typomorphism of Minerals: A Reference Book), Moscow: Nedra, 1989, pp. 204–218.

    Google Scholar 

  27. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  28. Nedosekin, Yu.D., Redkometal’nye granity Severo-Vostoka SSSR, (Rare-Metal Granites in Soviet Northeast), Moscow: Nauka, 1988.

  29. Nekrasov, I.Ya., Olovo v magmaticheskom i postmmagmaticheskom protsesse (Tin in Magmatic and Postmagmatic Processes), Moscow: Nauka, 1984.

  30. Orlov, Y.S., Filimonov, Y.A., and Boyarshinov, V.V., Revisited on genesis of alaskaite in Arga–Ynnakh–Khaisky massif (East Yakutia), Geologiya i poleznye iskopaemye Verkhoyano-Kolymskoi skladchatoi sistemy (Geology and Mineral Resources of the Verkhoyansk-Kolyma Fold System), Yakutsk: Yakut book publishing house, 1984, pp. 74–81.

  31. Petrograficheskii kodeks. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code. Magmatic, Metamorphic, Metasomatic, and Impact Rocks), 3rd Ed. St. Petersburg: VSEGEI, 2009.

  32. Printsipy raschleneniya i kartirovaniya granitoidnykh intruzii i vydeleniya petrologo-metallogenicheskikh variantov granitoidnykh serii (Principles of Subdivision and Mapping of Granitoid Intrusions and Recognition of Petrological–Metallogenical variants of Granitoid Series), St. Petersburg: VSEGEI, 2007.

  33. René, M., Nb–Ta-Ti Oxides in topaz granites of the Geyer Granite Stock (Erzgebirge Mts., Germany), Minerals, 2019, vol. 9, no. 3, p. 155.

    Article  Google Scholar 

  34. Romanova, M.A., Markovsky properties of grains sequences in rare-metal granite, their use in prospecting works and petrological researches, Geologicheskaya informatsiya I matematicheskaya geologiya (Geological Information and Mathematical Geology), Int. Geol. Congr. 25th Session, Moscow: Nedra, 1976, pp. 53–65.

  35. Romanova, M.A., Problems of mathematical geology at research of granitoid in Yakutia. In: Osnovnye metody matematicheskoi geologii I rezul’taty issledovanii (Fundamental Methods of Mathematical Geology and Results of Studies),Yakutsk: YaF Sib. Otd. Akad. Nauk SSSR, 1980, pp. 18–31.

  36. Rub, A.K. and Rub, M.G., Redkometal’nye granity Primor’ya (Rare-Metal Granites of Primorye), Moscow: VIMS, 2006.

  37. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1000000 (tret’e pokolenie). Seriya Verkhoyano–Kolymskaya. List Q-53—Verkhoyansk. Ob’yasnitel’naya zapiska (State geological map of Russian Federation. Scale 1 : 1 000 000 (the third generation). A series Verkhoyansk-Kolyma. Sheet Q-53—Verkhoyansk. Explanatory note.)) Ed. V.V. Kalashnikov, Saint Petersburg: VSEGEI, 2016.

  38. Tindle, A.G. and Breaks, F.W., Oxide minerals of the Separation Rapids rare-element granitic pegmatite group, northwestern Ontario, Can. Mineral., 1998, vol. 36, pp. 609–635.

    Google Scholar 

  39. Trunilina, V.A., Orlov, Yu.S., Zaitsev, A.I., and Roev, S.P., High-phosphorous lithium-fluorine granites of eastern Yakutia (Verkhoyansk-Kolyma orogenic region), Russ. J. Pac. Geol., 2019, vol. 38, no. 1, pp. 64–79.

    Google Scholar 

  40. Vistelius, A.B., Osnovy matematicheskoi geologii (opredelenie predmetal, izlozhenie apparata (Principles of Mathematical Geology (Definition and Algorithm)), Leningrad: Nauka, 1980.

  41. Voloshin, A.V. and Pakhomovskiy, Y.A., Mineralogiya tantala i niobiya v redkometal’nykh pegmatitakh (Tantalum and Niobium Mineralogy in Rare-Metal Pegmatites), Leningrad: Nauka, 1986.

  42. Xie, L., Wang, Z.J., Wang, R.C., Zhu, J.C., Che, X.D., Gao, J.F., and Zhao, X., Mineralogical constraints on the genesis of W–Nb–Ta mineralization in the Laiziling granite (Xianghualing district, south China). Ore Geol. Rev., 2018, vol. 95, pp. 695–712.

    Article  Google Scholar 

  43. Yarmolyuk, V.V., Kovalenko, V.I., and Pavlov, V.A., Acid and intermediate magmatic rocks of the conjugate activation zones, Magmaticheskie gornye porody, Kislye I srednie porody (Magmatic Rocks. Acidic and Intermediate Magmatic Rocks), Moscow: Nauka, 1987, vol. 4, pp. 234–259.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are deeply grateful to V.N. Podkorytov, principal researcher of the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences for the chance to use materials from the personal files of M.A. Romanova, scientific researcher of the Laboratory of Mathematical Institute, Mathematical Institute, Russian Academy of Sciences. We thank O.L. Galankina, senior scientific researcher of the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences for her assistance in the study of granite minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Alekseev.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, V.I., Marin, Y.B. On the Genesis of “White Granite” from the Kester Harpolith, Arga–Ynnakh–Khaya Pluton, East Yakutia. Geol. Ore Deposits 62, 719–730 (2020). https://doi.org/10.1134/S1075701520080024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520080024

Keywords:

Navigation