Skip to main content
Log in

Mineral Systems Based on the Number of Species-Defining Chemical Elements in Minerals: Their Diversity, Complexity, Distribution, and the Mineral Evolution of the Earth’s Crust: A Review

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—The chemical diversity of minerals can be analyzed in terms of the concept of mineral systems based on the set of chemical elements that are essential for defining a mineral species. Only species-defining elements are considered to be essential. According to this approach, all minerals are classified into ten types of mineral systems with the number of essential components ranging from 1 to 10. For all known minerals, only 70 chemical elements act as essential species-defining constituents. Using this concept of mineral systems, various geological objects may be compared from the viewpoint of their mineral diversity: for example, alkali massifs (Khibiny and Lovozero in Russia; Mont Saint Hilaire in Canada), evaporite deposits (Inder in Kazakhstan and Searles Lake in the United States), fumaroles of active volcanoes (Tolbachik in Kamchatka and Vulcano in Sicily, Italy), and hydrothermal deposits (Otto Mountain in the United States and El Dragon in Bolivia). Correlations between chemical and structural complexities of the minerals were analyzed using a total of 5240 datasets on their chemical compositions and 3989 datasets on their crystal structures. The statistical analysis yields strong and positive correlations (R2 > 0.95) between chemical and structural complexities and the number of different chemical elements in a mineral. The analysis of relationships between chemical and structural complexities provides strong evidence for the overall trend of a greater structural complexity at a higher chemical complexity. Following R. Hazen, four groups of minerals representing four mineral evolution stages have been considered: (I) “Ur-minerals,” (II) minerals from chondrite meteorites, (III) Hadean minerals, and (IV) contemporary minerals. According to the obtained data, the number of species-defining elements in minerals and their average contents increase regularly and significantly from stage I to stage IV. The analyzed average chemical and structural complexities in these four groups demonstrate that both are gradually increasing in the course of mineral evolution. The increasing complexity follows an overall trend: the more complex minerals were formed in the course of geological time, without replacing the simpler ones. The observed correlations between chemical and structural complexities understood in terms of the Shannon information suggest that chemical differentiation is the major force that drives the increase of mineral complexity over the course of geological time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bokii, G.B., Sistematika prirodnykh silikatov (Systematics of Natural Silicates), Moscow: VINITI, 1997 (in Russian).

  2. Bosi F., Hatert F., Halenius U., Pasero M., Miyawaki R., and Mills S.J. Application of the IMA-CNMNC dominant-valency rule to complex mineral compositions, Mineral. Mag., 2019, vol. 83, pp. 627–632

    Article  Google Scholar 

  3. Bulakh, A.G., Isomorphism and choosing the mineral name. Geol. Ore Deposits, 2010, vol. 52, pp. 612–613.

    Article  Google Scholar 

  4. Bulakh, A.G., End Members, dominant valency, and identifying minerals of mixed composition, Geol. Ore Deposits, 2010, vol. 52, pp. 614–617.

    Article  Google Scholar 

  5. Bulakh, A.G., Zolotarev, A.A., and Krivovichev, V.G., Struktury, izomorfizm, formuly, klassifikatsiya mineralov (Structures, Isomorphism, Formulas, Classification of Minerals), St. Petersburg: Saint Petersburg University Press, 2014 (in Russian).

  6. Campostrini, I., Demartin, F., and Gramaccioli, C.M., Vulcano: einaußergewöhnlicherFundpunkt von neuen und seltenen Mineralien, Miner.-Welt, 2010, vol. 21, no. 3, pp. 40–57.

    Google Scholar 

  7. Charykova, M.V. and Krivovichev, V.G., Mineral systems and the thermodynamics of selenites and selenates in the oxidation zone of sulfide ores—a review, Mineral. Petrol., 2017, vol. 111, no. (1), pp. 121–134.

  8. Cheynet, B., Dall’Aglio, M., Garavelli, A., Grasso, M.F., and Vurro, F., Trace elements from fumaroles at Vulcano Island (Italy): rates of transport and a thermochemical model, J. Volcanol. Geotherm. Res., 2000, vol. 95, pp. 273–283.

    Article  Google Scholar 

  9. Christy, A.G., Anomalous mineralogical diversity in the Periodic Table, and its causes, Mineral. Mag., 2015, vol. 79, pp. 33–49.

    Article  Google Scholar 

  10. Christy, A.G., Mills, S.J., and Kampf, A.R., A review of the structural architecture of tellurium oxycompounds, Mineral. Mag., 2016a, vol. 80, no. 3, pp. 415–545.

    Article  Google Scholar 

  11. Christy, A.G., Mills, S.J., Kampf, A.R., Housley, R.M., Thorne, B., and Marty, J., The relationship between mineral composition, crystal structure and paragenetic sequence: the case of secondary Te mineralization at the Bird Nest drift, Otto Mountain, California, USA, Mineral. Mag., 2016b, vol. 80, pp. 291–310.

    Article  Google Scholar 

  12. Demartin, F., Gramaccioli, C.M., and Campostrini, I., Demicheleite-(Cl), a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy, Am. Mineral., 2009, vol. 94, pp. 1045–1048.

    Article  Google Scholar 

  13. Demartin, F., Gramaccioli, C.M., and Campostrini, I., Demicheleite-(I), BiSI, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy, Mineral. Mag., 2010, vol. 74, pp. 141–145.

    Article  Google Scholar 

  14. Dolivo-Dobrovolsky, V.V., Dominant valency, end members, and reciprocal systems, Zap. Ross. Mineral. O-va, 2009, vol. 142, no. 4, pp. 44–52 (in Russian).

    Google Scholar 

  15. Garavelli, A., Laviano, R., and Vurro, F., Sublimate deposition from hydrothermal fluids at the fossa crater, Vulcano, Italy, Eur. J. Mineral., 1997, vol. 9, pp. 423–432.

    Article  Google Scholar 

  16. Garavelli, A., Mozgova, N.N., Orlandi, P., Bonacorsi, E., Pinto, D., Moelo, Y., and Borodaev, Y., Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VI. Vurroite, Pb20Sn2(Bi,As)22S54Cl6, a new mineral species, Can. Mineral., 2005, vol. 43, pp. 703–711.

    Article  Google Scholar 

  17. Gramaccioli, C.M., Demartin, F., Campostrini, I., and Orlandi, P., Demicheleite, BiSBr, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy, Am. Mineral., 2008, vol. 93, pp. 1603–1607.

    Article  Google Scholar 

  18. Grew, E.S. and Hazen, R.M., Beryllium mineral evolution, Am. Mineral., 2014, vol. 99, pp. 999–1021.

    Article  Google Scholar 

  19. Grew, E.S., Krivovichev, S.V., Hazen, M.R., and Hystad, G., Evolution of structural complexity in boron minerals, Can. Mineral., 2016, vol. 54, pp. 125–143.

    Article  Google Scholar 

  20. Grew, E.S., Hystad, G., Hazen, R.M., Krivovichev, S.V., and Gorelova, L.A., How many boron minerals occur in Earth’s upper crust?, Am. Mineral., 2017, vol. 102, pp. 1573–1587.

    Article  Google Scholar 

  21. Grew, E.S., Hystad, G., Toapanta, M.P., Eleish, A., Ostroverkhova, A., Golden, J., and Hazen, R.M., Lithium mineral evolution and ecology: comparison with boron and beryllium, Eur. J. Mineral., 2019, vol. 31, pp. 755–774.

    Article  Google Scholar 

  22. Grigoriev, D.P., Comparative-historical analysis in the study of the genesis of minerals and mineral deposits, Zap. Vsesoyuz. Mineral. O-va, 1982, vol. 111, no. 4, pp. 422–431.

    Google Scholar 

  23. Grundmann, G. and Förster, H.-J., Origin of the El Dragon Selenium Mineralization, Quijarro Province, Potosí, Bolivia, Minerals, 2017, vol. 7, p. 68.

    Article  Google Scholar 

  24. Hatert, F. and Burke, E.A.J., The IMA–CNMNC dominant-constituent rule revised and extended, Can. Mineral., 2008, vol. 46, pp. 717–728.

    Article  Google Scholar 

  25. Hawthorne, F.C., The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals, Can. Mineral., 2002, vol. 40, pp. 699–710.

    Article  Google Scholar 

  26. Hazen, R.M., Paleomineralogy of the Hadean Eon: a preliminary species list, Am. J. Sci., 2013, vol. 313, pp. 807–843.

    Article  Google Scholar 

  27. Hazen, R.M. and Ferry, J.M., Mineral evolution: mineralogy in the fourth dimension, Elements, 2010, vol. 10, pp. 9–12.

    Article  Google Scholar 

  28. Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., and Yang, H., Mineral evolution. Am. Mineral., 2008, vol. 93, pp. 1693–1720.

    Article  Google Scholar 

  29. Hazen, R.M., Ewing, R.C., and Sverjensky, D.A., Evolution of uranium and thorium minerals, Am. Mineral., 2009, vol. 94, pp. 1293–1311.

    Article  Google Scholar 

  30. Hazen, R.M., Bekker, A., Bish, D.L., Bleeker, W., Downs, R.T., Farquhar, J., Ferry, J.M., Grew, E.S., Knoll, A.H., Papineau, D.F., Ralph, J.P., Sverjensky, D.A., and Valley, J.W., Needs and opportunities in mineral evolution research, Am. Mineral., 2011, vol. 96, pp. 953–963.

    Article  Google Scholar 

  31. Hazen, R.M., Golden, J., Downs, R.T., Hystad, G., Grew, E.S., Azzolini, D., and Sverjensky, D.A., Mercury (Hg) mineral evolution: a mineralogical record of supercontinental assembly, changing ocean geochemistry, and the emerging terrestrial biosphere, Am. Mineral., 2012, vol. 97, pp. 1013–1042.

    Article  Google Scholar 

  32. Hazen, R.M., Sverjensky, D.A., Azzolini, D., Bish, D.L., Elmore, S., Hinnov, L., and Milliken, R.E., Clay mineral evolution, Am. Mineral., 2013, vol. 98, pp. 2007–2029.

    Article  Google Scholar 

  33. Hazen R.M., Liu X.-M., Downs R.T., Golden J., Pires A.J., Grew E.S., Hystad G., Estrada C., and Sverjensky D.A. Mineral evolution: episodic metallogenesis, the supercontinent cycle, and the co-evolving geosphere and biosphere, Econ. Geol. Spec. Publ., 2014. vol. 18, pp. 1–15.

    Google Scholar 

  34. Hazen, R.M., Grew, E.S., Downs, R.T., Golden, J., and Hystad, G., Mineral ecology: chance and necessity in the mineral diversity of terrestrial planets, Can. Mineral., 2015, vol. 53, pp. 295–324.

    Article  Google Scholar 

  35. Hazen, R.M., Hummer, D.R., Hystad, G., Downs, R.T., and Golden, J.J., Carbon mineral ecology: Predicting the undiscovered minerals of carbon, Am. Mineral., 2016, vol. 101, pp. 889–906.

    Article  Google Scholar 

  36. Hazen, R.M., Hystad, G., Golden, J.J., Hummer, D.R., Liu, C., Downs, R.T., Morrison, S.M., and Grew, E.S., Cobalt mineral ecology, Am. Mineral., 2017, vol. 102, pp. 108–116.

    Article  Google Scholar 

  37. Hazen, R.M., Downs, R.T., Eleish, A., Fox, P., Gagne, O.C., Golden, J.J., Grew, E.S., Hummer, D.R., Hystad, G., Krivovichev, S.V., Li, C., Liu, C., Ma, X., Morrison, S.M., Pan, F., Pires, A.J., Prabhu, A., Ralph, J., Runyon, S.E., and Zhong, H., Data-driven discovery in mineralogy: recent advances in data resources, analysis, and visualization. Engineering, 2019, vol. 5, no. 3, pp. 397–405.

    Article  Google Scholar 

  38. Housley R.M., Kampf A.R., Mills S.J., Marty J., and Thorne B. The remarkable occurrence of rare secondary minerals at Otto Mountain near Baker, California - including seven new species, Rocks. Miner., 2011, vol. 86, no. 2, pp. 132–142.

    Article  Google Scholar 

  39. Hystad, G., Downs, R.T., and Hazen, R.M., Mineral frequency distribution data conform to a large number of rare events model: Prediction of Earth’s “missing minerals”, Math. Geosci., 2015a, vol. 47, pp. 647–661.

    Article  Google Scholar 

  40. Hystad, G., Downs, R.T., Grew, E.S., and Hazen, R.M., Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique, Earth Planet. Sci. Lett., 2015b, vol. 426, pp. 154–157.

    Article  Google Scholar 

  41. Ivanov, V.V. and Yushko-Zakharova, O.E., Tellurium, Geologicheskii spravochnik po siderofil’nym i khal’kofil’nym elementam (Geological Reference Book of Chalcophile and Siderophile elements), Moscow: Nedra, 1989, pp. 353–424.

    Google Scholar 

  42. Kalbskopf, R., Synthese und kristallstruktur von Cu12–xTe4S13, demtellur-endglied der fahlerze, Tscherm. Miner. Petrogr. Mitt., 1974, Bd. 21, pp. 1–10.

    Article  Google Scholar 

  43. Krivovichev, S.V., Topological complexity of crystal structures: quantitative approach, Acta Crystallogr., 2012, vol. A68, pp. 393–398.

  44. Krivovichev, S.V., Complexity, diversity and evolution of the mineral world: from Vernadsky to the present day, Vernadskii i XXI vek: geosfera, biosfera, noosfera, i simmetriya (Vernadsky and XXIrst Century: Geosphere, Biosphere, Noosphere, and Symmetry), Sofia: St. Ivan Rilski, 2013a, pp. 26–32.

    Google Scholar 

  45. Krivovichev, S.V., Structural complexity of minerals: information storage and processing in the mineral world, Mineral. Mag., 2013b, vol. 77, no. 3, pp. 275–326.

    Article  Google Scholar 

  46. Krivovichev, S.V., Which inorganic structures are the most complex? Angew. Chem. Int. Ed., 2014, vol. 53, pp. 654–661.

    Article  Google Scholar 

  47. Krivovichev, S.V. Structural complexity of minerals and mineral parageneses: Information and its evolution in the mineral world, Highlights in Mineralogical Crystallography, Danisi, R. and Armbruster, T., Eds., Berlin–Bodton: Walter de Gruyter GmbH, 2016a, pp. 31–73.

  48. Krivovichev, S.V., Structural complexity and configurational entropy of crystalline solids, Acta Crystallogr., 2016b, vol. 72, pp. 274–276.

    Google Scholar 

  49. Krivovichev, V.G. and Charykova, M.V., Mineral and physical-chemical systems of evaporites: geochemical and thermodynamic aspects, Geol. Ore Deposits, 2017, vol. 59, pp. 677–686.

  50. Krivovichev, S.V., Ladders of information: What contributes to the structural complexity in inorganic crystals, Z. Kristallogr, 2018, vol. 233, pp. 155–161.

    Article  Google Scholar 

  51. Krivovichev, V.G. and Charykova, M.V., Termodinamika mineral’nykh ravnovesii v sistemakh c toksichnymi komponentami. I. Selen (Thermodynamics of Mineral Equilibria in Systems with Toxic Components. I. Selenium), St. Petersburg: Solo, 2006.

  52. Krivovichev, V.G. and Charykova, M.V., Klassifikatsiya mineral’nykh sistem (Classification of Mineral Systems), St. Petersburg: St.-Petersburg University Press, 2013b.

  53. Krivovichev, V.G. and Charykova, M.V., Number of minerals of various chemical elements: Statistics 2012 (a new approach to an old problem), Geol. Ore Deposits, 2014, vol. 56, pp. 553–559.

    Article  Google Scholar 

  54. Krivovichev, V.G. and Charykova, M.V., Mineral systems, their types and distribution in nature, 1. Khibiny, Lovozero and the Mont Saint-Hilaire, Geol. Ore Deposits, 2016, vol. 58, pp. 551–558.

    Article  Google Scholar 

  55. Krivovichev, V.G. and Charykova, M.V., Mineral system based on the number of essential, species-defining chemical elements in minerals, their types and distribution in nature. 2. The products of fumarole activity at the active volcanoes (Tolbachik, Volcano), Geol. Ore Deposits, 2017, vol. 59, no. 1, pp. 575–583.

    Article  Google Scholar 

  56. Krivovichev, V.G. and Charykova, M.V., Mineral systems, their types, and distribution in Nature. 3. Otto Mountain (USA) and Dragon (Bolivia) deposits, Geol. Ore Deposits, 2019, vol. 61, no. 7, pp. 589–597.

    Article  Google Scholar 

  57. Krivovichev, V.G., Charykova, M.V., and Vishnevsky, A.V., The Thermodynamics of selenium minerals in near-surface environments, Minerals, 2017, vol. 7, no. 188.

  58. Krivovichev, S.V., Krivovichev, V.G., and Hazen, R.M., Structural and chemical complexity of minerals: correlations and time evolution, Eur. J. Mineral., 2018a, vol. 30, pp. 231–236.

    Article  Google Scholar 

  59. Krivovichev, V.G., Charykova, M.V., and Krivovichev, S.V., The concept of mineral systems and its application to the study of mineral diversity and evolution, Eur. J. Mineral., 2018b, vol. 30, pp. 219–230.

    Article  Google Scholar 

  60. Krivovichev, V.G., Krivovichev, S.V., and Charykova, M.V., Selenium minerals: structural and chemical diversity and complexity, Minerals, 2019, vol. 9, no. 455.

  61. Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskay-Korsakova, O.M., Nefedov, E.I., Ilyinsky, G.A., Sergeev, A.S., and Abakumova, N.B., Kaledonskii kompleks ul’traosnovnykh, shchelochnykh porod i karbonatitov Kol’skogo poluostrova I Severnoi Karelii (geologiya, petrologiya, mineralogiya, i geokhimiya) (Caledonian Complex of Ultramafic, Alkaline Rocks and Carbonatites of the Kola Peninsula and North Karelia (Geology, Petrology, Mineralogy and Geochemistry), Moscow: Nedra, 1965.

  62. Liu, C., Hystad, G., Golden, J.J., Hummer, D.R., Downs, R.T., Morrison, S.M., Ralph, J.P., and Hazen, R.M., Chromium mineral ecology, Am. Mineral., 2017, vol. 102, pp. 612–619.

    Article  Google Scholar 

  63. Liu, C., Eleish, A., Hystad, G., Golden, J.J., Downs, R.T., Morrison, S.M., Hummer, D.R., Ralph, J.P., Fox, P., and Hazen, R.M., Analysis and visualization of vanadium mineral diversity and distribution, Am. Mineral., 2018, vol. 103, pp. 1080–1086.

    Article  Google Scholar 

  64. Makovicky, E. and Karup-Moller, S., Exploratory studies of substitutions in the tetrahedrite/tennantite–goldfieldite solid solution, Can. Mineral., 2017, vol. 55, pp. 233–244.

    Article  Google Scholar 

  65. Mandarino, J.A., The check-list for submission of proposals for new minerals to the Commission on New Minerals and Mineral Names, International Mineralogical Association. Can. Mineral., 1987, vol. 25, pp. 775–783.

    Google Scholar 

  66. Mandarino, J.A., Nickel, E.H., and Cesbron, F., Rules of procedure of the Commission on New Minerals and Mineral Names, International Mineralogical Association, Can. Mineral., 1984, vol. 22, pp. 367–368.

    Google Scholar 

  67. Marin, Yu.V., Associations of accessory minerals and peculiarities of their evolution at different levels of granitoid series formation, Zap. Vsesoyuz. Mineral. O-va, 1973, vol. 102, no. 4, pp. 572–590.

    Google Scholar 

  68. Mills, S.J., Hatert, F., Nickel, E.H., and Ferraris, G., The definition of a mineral, Can. Mineral., 1995, vol. 33, pp. 689–690.

    Google Scholar 

  69. Nickel, E.H., Solid solutions in mineral nomenclature, Can. Mineral., 1992, vol. 30, pp. 231–234.

    Google Scholar 

  70. Nickel, E.H., The definition of a mineral, Canad. Miner., 1995, vol. 33, pp. 689–690.

  71. Nickel, E.H. and Mandarino, J.A., Procedures involving the IMA Commission on New Minerals and Mineral Names and guidelines on mineral nomenclature, Am. Mineral., 1987, vol. 72, pp. 1031–1042.

    Google Scholar 

  72. Nickel, E.H. and Grice, J.D., The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, Can. Mineral., 1998, vol. 36, pp. 913–926.

    Google Scholar 

  73. Oppenheimer, C., Fischer, T.P., and Scaillet, B., Volcanic degassing: process and impact, Treatise on Geochemistry, Amsterdam: 2014, vol. 4, pp. 111–179.

    Article  Google Scholar 

  74. Pankova, Y.A., Gorelova, L.A., Krivovichev, S.V., and Pekov, I.V., The crystal structure of ginorite, Ca2[B14O20(OH)6](H2O)5, and the analysis of dimensional reduction and structural complexity in the CaO–B2O3–H2O system, Eur. J. Mineral., 2018, vol. 30, pp. 277–287.

    Article  Google Scholar 

  75. Pasero, M., The mew IMA List of Minerals. Updated: July: 2019. http://pubsites.uws.edu.au/imacnmnc/

  76. Pekov I.V. New minerals: where are they discovered, Sorosovs. Obrazovat. Zh., 2001, vol. 7. no. 5. P. 65-74 (in Russian).

  77. Popkova, T.N., The VIth Meeting of the All Union Mineralogical Society, Zap. Mineral. O-va, 1982, vol. 111, no. 4, pp. 392–395.

  78. Rundquist, D.V., The use of regularities of mineral formations development in time at forecasting–metallogenic researches, Zap. Vsesoyuz. Mineral. O-va, 1982, vol. 111, no. 4, pp. 407–421.

    Google Scholar 

  79. Urusov, V.S., Natural selection of mineral species, Geol. Ore Deposits, 2010, vol. 52, pp. 852-871).

    Article  Google Scholar 

  80. Valyashko, M.G., Zakonomernosti formirovaniya mestorozhdeniii solei (Formation of Salts Deposits), Moscow: Moscow University Press, 1962.

  81. Yushkin, N.P., Evolutionary ideas in modern mineralogy, Zap. Vsesoyuz. Mineral. O-va, 1982, vol. 111, no. 4, pp. 432–442.

    Google Scholar 

  82. Yushkin, N.P., Evolution of the mineral world, origin of the biosphere and biomineral co-evolution, Mineraly, mineraloobrazovanie, struktura, raznoobrazie, I evolyutsiya mineral’nogo mira, rol’ mineralov v proiskhozhdenii I razvitii zhizni, biomineral’nye vzaimodeistviya (Minerals, Mineral Formation, Structure, Diversity and Evolution of the Mineral World, the Role of Minerals in the Origin of Life, Biomineral Interactions), Syktyvkar, 2008, pp. 455–459.

  83. Zhabin, A.G., Is there evolution of mineral species on Earth? Dokl. Akad. Nauk SSSR, 1979, vol. 247, no. 1, pp. 199–202.

    Google Scholar 

  84. Zhabin, A.G., Problems of the mineral phylogeny, In: Novye idei v geneticheskoi mineralogii (New Ideas in Genetic Mineralogy), Leningrad: Nauka, 1983, pp. 7–12.

  85. www.mindat.org/, “http://rruff/"rruff.info/ima/.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-15-50054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Krivovichev.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivovichev, V.G., Charykova, M.V. & Krivovichev, S.V. Mineral Systems Based on the Number of Species-Defining Chemical Elements in Minerals: Their Diversity, Complexity, Distribution, and the Mineral Evolution of the Earth’s Crust: A Review. Geol. Ore Deposits 62, 704–718 (2020). https://doi.org/10.1134/S1075701520080073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520080073

Keywords:

Navigation